{"title":"Dissecting the geometric and hydrophobic constraints of stapled peptides.","authors":"Jianguo Li, Yaw Sing Tan, Chandra S Verma","doi":"10.1002/prot.26662","DOIUrl":null,"url":null,"abstract":"<p><p>Stapled peptides are a promising class of molecules with potential as highly specific probes of protein-protein interactions and as therapeutics. Hydrocarbon stapling affects the peptide properties through the interplay of two factors: enhancing the overall hydrophobicity and constraining the conformational flexibility. By constructing a series of virtual peptides, we study the role of each factor in modulating the structural properties of a hydrocarbon-stapled peptide PM2, which has been shown to enter cells, engage its target Mouse Double Minute 2 (MDM2), and activate p53. Hamiltonian replica exchange molecular dynamics (HREMD) simulations suggest that hydrocarbon stapling favors helical populations of PM2 through a combination of the geometric constraints and the enhanced hydrophobicity of the peptide. To further understand the conformational landscape of the stapled peptides along the binding pathway, we performed HREMD simulations by restraining the peptide at different distances from MDM2. When the peptide approaches MDM2, the binding pocket undergoes dehydration which appears to be greater in the presence of the stapled peptide compared with the linear peptide. In the binding pocket, the helicity of the stapled peptide is increased due to the favorable interactions between the peptide residues as well as the staple and the microenvironment of the binding pocket, contributing to enhanced affinity. The dissection of the multifaceted mechanism of hydrocarbon stapling into individual factors not only deepens fundamental understanding of peptide stapling, but also provides guidelines for the design of new stapled peptides.</p>","PeriodicalId":56271,"journal":{"name":"Proteins-Structure Function and Bioinformatics","volume":" ","pages":"287-301"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteins-Structure Function and Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/prot.26662","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/9 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Stapled peptides are a promising class of molecules with potential as highly specific probes of protein-protein interactions and as therapeutics. Hydrocarbon stapling affects the peptide properties through the interplay of two factors: enhancing the overall hydrophobicity and constraining the conformational flexibility. By constructing a series of virtual peptides, we study the role of each factor in modulating the structural properties of a hydrocarbon-stapled peptide PM2, which has been shown to enter cells, engage its target Mouse Double Minute 2 (MDM2), and activate p53. Hamiltonian replica exchange molecular dynamics (HREMD) simulations suggest that hydrocarbon stapling favors helical populations of PM2 through a combination of the geometric constraints and the enhanced hydrophobicity of the peptide. To further understand the conformational landscape of the stapled peptides along the binding pathway, we performed HREMD simulations by restraining the peptide at different distances from MDM2. When the peptide approaches MDM2, the binding pocket undergoes dehydration which appears to be greater in the presence of the stapled peptide compared with the linear peptide. In the binding pocket, the helicity of the stapled peptide is increased due to the favorable interactions between the peptide residues as well as the staple and the microenvironment of the binding pocket, contributing to enhanced affinity. The dissection of the multifaceted mechanism of hydrocarbon stapling into individual factors not only deepens fundamental understanding of peptide stapling, but also provides guidelines for the design of new stapled peptides.
期刊介绍:
PROTEINS : Structure, Function, and Bioinformatics publishes original reports of significant experimental and analytic research in all areas of protein research: structure, function, computation, genetics, and design. The journal encourages reports that present new experimental or computational approaches for interpreting and understanding data from biophysical chemistry, structural studies of proteins and macromolecular assemblies, alterations of protein structure and function engineered through techniques of molecular biology and genetics, functional analyses under physiologic conditions, as well as the interactions of proteins with receptors, nucleic acids, or other specific ligands or substrates. Research in protein and peptide biochemistry directed toward synthesizing or characterizing molecules that simulate aspects of the activity of proteins, or that act as inhibitors of protein function, is also within the scope of PROTEINS. In addition to full-length reports, short communications (usually not more than 4 printed pages) and prediction reports are welcome. Reviews are typically by invitation; authors are encouraged to submit proposed topics for consideration.