{"title":"Machine learning unveils RNA polymerase II binding as a predictor for SMAD2-dependent transcription dynamics in response to Actvin signalling","authors":"Dan Shi, Weihua Feng, Zhike Zi","doi":"10.1049/syb2.12085","DOIUrl":null,"url":null,"abstract":"<p>The transforming growth factor-β (TGF-β) superfamily, including Nodal and Activin, plays a critical role in various cellular processes. Understanding the intricate regulation and gene expression dynamics of TGF-β signalling is of interest due to its diverse biological roles. A machine learning approach is used to predict gene expression patterns induced by Activin using features, such as histone modifications, RNA polymerase II binding, SMAD2-binding, and mRNA half-life. RNA sequencing and ChIP sequencing datasets were analysed and differentially expressed SMAD2-binding genes were identified. These genes were classified into activated and repressed categories based on their expression patterns. The predictive power of different features and combinations was evaluated using logistic regression models and their performances were assessed. Results showed that RNA polymerase II binding was the most informative feature for predicting the expression patterns of SMAD2-binding genes. The authors provide insights into the interplay between transcriptional regulation and Activin signalling and offers a computational framework for predicting gene expression patterns in response to cell signalling.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/syb2.12085","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/syb2.12085","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The transforming growth factor-β (TGF-β) superfamily, including Nodal and Activin, plays a critical role in various cellular processes. Understanding the intricate regulation and gene expression dynamics of TGF-β signalling is of interest due to its diverse biological roles. A machine learning approach is used to predict gene expression patterns induced by Activin using features, such as histone modifications, RNA polymerase II binding, SMAD2-binding, and mRNA half-life. RNA sequencing and ChIP sequencing datasets were analysed and differentially expressed SMAD2-binding genes were identified. These genes were classified into activated and repressed categories based on their expression patterns. The predictive power of different features and combinations was evaluated using logistic regression models and their performances were assessed. Results showed that RNA polymerase II binding was the most informative feature for predicting the expression patterns of SMAD2-binding genes. The authors provide insights into the interplay between transcriptional regulation and Activin signalling and offers a computational framework for predicting gene expression patterns in response to cell signalling.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.