Validating computer applications for calculating spatial resolution and noise property in CT using simulated images with known properties.

IF 1.7 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Radiological Physics and Technology Pub Date : 2024-03-01 Epub Date: 2024-01-10 DOI:10.1007/s12194-023-00771-w
Takeshi Inoue, Katsuhiro Ichikawa, Takanori Hara, Kazuya Ohashi, Kazuhiro Sato, Hiroki Kawashima
{"title":"Validating computer applications for calculating spatial resolution and noise property in CT using simulated images with known properties.","authors":"Takeshi Inoue, Katsuhiro Ichikawa, Takanori Hara, Kazuya Ohashi, Kazuhiro Sato, Hiroki Kawashima","doi":"10.1007/s12194-023-00771-w","DOIUrl":null,"url":null,"abstract":"<p><p>The purpose of this study was to evaluate, using simulated images with known property values, how accurately some computer applications for calculating modulation transfer function (MTF), task transfer function (TTF), or noise power spectrum (NPS) in computed tomography (CT) based on widely known techniques produce their results. Specifically, they were three applications applicable to the wire method for MTF calculation, two applications corresponding to the circular edge (CE) and linear edge (LE) methods for TTF, and one application using a two-dimensional Fourier transform for NPS, which are collectively integrated with the software 'CTmeasure' provided by the Japanese Society of CT Technology. Images for the calculation with radial symmetry were generated based on a roll-off type filter function. The accuracy of each application was evaluated by comparing the calculated property with the true one. The calculated MTFs for the wire method accurately matched the true ones with percentage errors of smaller than 1.0%. In contrast, the CE and LE methods presented relatively large errors of up to 50% at high frequencies, whereas the NPS's errors were up to 30%. A closer investigation revealed, however, that these errors were attributable not to the applications but to the insufficiencies in the measurement techniques commonly employed. By improving the measurement conditions to minimize the effects of the insufficiencies, the errors notably decreased, whichvalidated the calculation techniques in the applications we used.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiological Physics and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12194-023-00771-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/10 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

The purpose of this study was to evaluate, using simulated images with known property values, how accurately some computer applications for calculating modulation transfer function (MTF), task transfer function (TTF), or noise power spectrum (NPS) in computed tomography (CT) based on widely known techniques produce their results. Specifically, they were three applications applicable to the wire method for MTF calculation, two applications corresponding to the circular edge (CE) and linear edge (LE) methods for TTF, and one application using a two-dimensional Fourier transform for NPS, which are collectively integrated with the software 'CTmeasure' provided by the Japanese Society of CT Technology. Images for the calculation with radial symmetry were generated based on a roll-off type filter function. The accuracy of each application was evaluated by comparing the calculated property with the true one. The calculated MTFs for the wire method accurately matched the true ones with percentage errors of smaller than 1.0%. In contrast, the CE and LE methods presented relatively large errors of up to 50% at high frequencies, whereas the NPS's errors were up to 30%. A closer investigation revealed, however, that these errors were attributable not to the applications but to the insufficiencies in the measurement techniques commonly employed. By improving the measurement conditions to minimize the effects of the insufficiencies, the errors notably decreased, whichvalidated the calculation techniques in the applications we used.

利用已知属性的模拟图像验证计算 CT 空间分辨率和噪声属性的计算机应用程序。
本研究的目的是利用已知属性值的模拟图像,评估一些基于广为人知的技术计算计算机断层扫描(CT)中调制传递函数(MTF)、任务传递函数(TTF)或噪声功率谱(NPS)的计算机应用程序产生结果的准确性。具体来说,它们是三个适用于线性法计算 MTF 的应用程序,两个对应于圆边法(CE)和线性边缘法(LE)计算 TTF 的应用程序,以及一个使用二维傅里叶变换计算 NPS 的应用程序,这些应用程序都与日本 CT 技术协会提供的软件 "CTmeasure "集成在一起。用于径向对称计算的图像是根据滚降类型滤波函数生成的。通过比较计算属性和真实属性,评估了每种应用的准确性。导线法计算出的 MTF 与真实 MTF 精确匹配,百分比误差小于 1.0%。相比之下,CE 和 LE 方法的误差相对较大,在高频时高达 50%,而 NPS 的误差则高达 30%。但仔细研究后发现,这些误差不是应用造成的,而是通常采用的测量技术存在缺陷。通过改善测量条件,将不足之处的影响降至最低,误差明显减小,从而验证了我们所使用的计算技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Radiological Physics and Technology
Radiological Physics and Technology RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
3.00
自引率
12.50%
发文量
40
期刊介绍: The purpose of the journal Radiological Physics and Technology is to provide a forum for sharing new knowledge related to research and development in radiological science and technology, including medical physics and radiological technology in diagnostic radiology, nuclear medicine, and radiation therapy among many other radiological disciplines, as well as to contribute to progress and improvement in medical practice and patient health care.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信