Structural investigation of vitamin K epoxide reductase domain-containing protein in Leptospira species: a potential target for the development of new leptospirosis treatments as an alternative to antibiotics.
{"title":"Structural investigation of vitamin K epoxide reductase domain-containing protein in <i>Leptospira</i> species: a potential target for the development of new leptospirosis treatments as an alternative to antibiotics.","authors":"Sionfoungo Daouda Soro, Virginie Lattard, Angeli Kodjo, Etienne Benoît, Nolan Chatron","doi":"10.1080/07391102.2024.2302925","DOIUrl":null,"url":null,"abstract":"<p><p>Leptospirosis is a worldwide zoonosis caused by the motile bacterium <i>Leptospira</i>. This disease can cause hemorrhagic symptoms, multi-visceral and renal failures, resulting in one million cases and approximately 60,000 deaths each year. The motility of <i>Leptospira</i> is highly involved in its virulence and is ensured by the presence of two flagella in the periplasm. Several proteins that require the formation of disulfide bridges are essential for flagellar function. In <i>Leptospira</i>, these redox reactions are catalysed by the vitamin K epoxide reductase domain-containing protein (VKORdcp). The aim of the present work was to study the conservation of VKORdcp among <i>Leptospira</i> species and its interactions with putative substrates and inhibitor. Our results evidenced the presence of ten amino acids specific to either pathogenic or saprophytic species. Furthermore, structural studies revealed a higher affinity of the enzyme for vitamin K1 quinone, compared to ubiquinone. Finally, characterisation of the binding of a potential inhibitor revealed the involvement of some VKORdcp amino acids that have not been present in the human enzyme, in particular the polar residue D114. Our study thus paves the way for the future development of <i>Leptospira</i> VKORdcp inhibitors, capable of blocking bacterial motility. Such molecules could therefore offer a promising therapeutic alternative to antibiotics, especially in the event of the emergence of antibiotic-resistant strains.</p>","PeriodicalId":15272,"journal":{"name":"Journal of Biomolecular Structure & Dynamics","volume":" ","pages":"4274-4286"},"PeriodicalIF":2.7000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular Structure & Dynamics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/07391102.2024.2302925","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/10 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Leptospirosis is a worldwide zoonosis caused by the motile bacterium Leptospira. This disease can cause hemorrhagic symptoms, multi-visceral and renal failures, resulting in one million cases and approximately 60,000 deaths each year. The motility of Leptospira is highly involved in its virulence and is ensured by the presence of two flagella in the periplasm. Several proteins that require the formation of disulfide bridges are essential for flagellar function. In Leptospira, these redox reactions are catalysed by the vitamin K epoxide reductase domain-containing protein (VKORdcp). The aim of the present work was to study the conservation of VKORdcp among Leptospira species and its interactions with putative substrates and inhibitor. Our results evidenced the presence of ten amino acids specific to either pathogenic or saprophytic species. Furthermore, structural studies revealed a higher affinity of the enzyme for vitamin K1 quinone, compared to ubiquinone. Finally, characterisation of the binding of a potential inhibitor revealed the involvement of some VKORdcp amino acids that have not been present in the human enzyme, in particular the polar residue D114. Our study thus paves the way for the future development of Leptospira VKORdcp inhibitors, capable of blocking bacterial motility. Such molecules could therefore offer a promising therapeutic alternative to antibiotics, especially in the event of the emergence of antibiotic-resistant strains.
期刊介绍:
The Journal of Biomolecular Structure and Dynamics welcomes manuscripts on biological structure, dynamics, interactions and expression. The Journal is one of the leading publications in high end computational science, atomic structural biology, bioinformatics, virtual drug design, genomics and biological networks.