Investigating the effects of four medicinal plants against dengue virus through QSAR modeling and molecular dynamics studies.

IF 2.7 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Faisal Alotaibi, Faris F Aba Alkhayl, Ahmed I Foudah, Mohammad Azhar Kamal, Ehssan H Moglad, Shamshir Khan, Zia Ur Rehman, Mohiuddin Khan Warsi, Talha Jawaid, Aftab Alam
{"title":"Investigating the effects of four medicinal plants against dengue virus through QSAR modeling and molecular dynamics studies.","authors":"Faisal Alotaibi, Faris F Aba Alkhayl, Ahmed I Foudah, Mohammad Azhar Kamal, Ehssan H Moglad, Shamshir Khan, Zia Ur Rehman, Mohiuddin Khan Warsi, Talha Jawaid, Aftab Alam","doi":"10.1080/07391102.2024.2301744","DOIUrl":null,"url":null,"abstract":"<p><p>The Dengue virus (DENV) has been increasingly recognized as a prevalent viral pathogen responsible for global transmission of infection. It has been established that DENV's NS5 methyltransferase (MTase) controls viral replication. As a result, NS5 MTase is considered a potentially useful drug target for DENV. In this study, the two phases of virtual screening were conducted using the ML-based QSAR model and molecular docking to identify potential compounds against NS5 of DENV. Four medicinal plants [<i>Aloe vera</i>, <i>Cannabis sativa</i> (Hemp), <i>Ocimum sanctum</i> (Holy Basil; Tulsi), and <i>Zingiber officinale</i> (Ginger)] that showed anti-viral properties were selected for sourcing the phytochemicals and screening them against NS5. Additionally, re-docking at higher exhaustiveness and interaction analysis were performed which resulted in the identification of the top four hits (<b>135398658</b>, <b>5281675</b>, <b>119394</b>, and <b>969516</b>) which showed comparable results with the control Sinefungin (SFG). Post molecular dynamics simulation, <b>135398658</b> showed the lowest RMSD (0.4-0.5 nm) and the maximum number of hydrogen bonds (eight hydrogen bonds) after the control while <b>5281675</b> and <b>969516</b> showed comparable hydrogen bonds to the control. These compounds showed direct interactions with the catalytic site residues GLU111 and ASP131, in addition to this these compounds showed stable complex formation as depicted by principal component analysis and free energy landscape. <b>135398658</b> showed lower total binding free energy (Δ<i>G</i><sub>Total</sub> = -36.56 kcal/mol) than the control, while <b>5281675</b> had comparable values to the control (Δ<i>G</i><sub>Total</sub> = -34.1 kcal/mol). Overall, the purpose of this study was to identify phytochemicals that inhibit NS5 function, that could be further tested experimentally to treat dengue virus (DENV).</p>","PeriodicalId":15272,"journal":{"name":"Journal of Biomolecular Structure & Dynamics","volume":" ","pages":"4063-4080"},"PeriodicalIF":2.7000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular Structure & Dynamics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/07391102.2024.2301744","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/10 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The Dengue virus (DENV) has been increasingly recognized as a prevalent viral pathogen responsible for global transmission of infection. It has been established that DENV's NS5 methyltransferase (MTase) controls viral replication. As a result, NS5 MTase is considered a potentially useful drug target for DENV. In this study, the two phases of virtual screening were conducted using the ML-based QSAR model and molecular docking to identify potential compounds against NS5 of DENV. Four medicinal plants [Aloe vera, Cannabis sativa (Hemp), Ocimum sanctum (Holy Basil; Tulsi), and Zingiber officinale (Ginger)] that showed anti-viral properties were selected for sourcing the phytochemicals and screening them against NS5. Additionally, re-docking at higher exhaustiveness and interaction analysis were performed which resulted in the identification of the top four hits (135398658, 5281675, 119394, and 969516) which showed comparable results with the control Sinefungin (SFG). Post molecular dynamics simulation, 135398658 showed the lowest RMSD (0.4-0.5 nm) and the maximum number of hydrogen bonds (eight hydrogen bonds) after the control while 5281675 and 969516 showed comparable hydrogen bonds to the control. These compounds showed direct interactions with the catalytic site residues GLU111 and ASP131, in addition to this these compounds showed stable complex formation as depicted by principal component analysis and free energy landscape. 135398658 showed lower total binding free energy (ΔGTotal = -36.56 kcal/mol) than the control, while 5281675 had comparable values to the control (ΔGTotal = -34.1 kcal/mol). Overall, the purpose of this study was to identify phytochemicals that inhibit NS5 function, that could be further tested experimentally to treat dengue virus (DENV).

通过QSAR建模和分子动力学研究探讨四种药用植物对登革热病毒的作用
人们越来越认识到,登革热病毒(DENV)是造成全球传染的一种流行病毒病原体。目前已经确定,登革热病毒的 NS5 甲基转移酶(MTase)控制着病毒的复制。因此,NS5 MT酶被认为是治疗 DENV 的潜在药物靶点。本研究利用基于 ML 的 QSAR 模型和分子对接进行了两个阶段的虚拟筛选,以确定抗 DENV NS5 的潜在化合物。研究人员选择了四种具有抗病毒特性的药用植物[芦荟、大麻(Hemp)、圣罗勒(Holy Basil; Tulsi)和生姜(Zingiber officinale)]作为植物化学物质的来源,并对其进行了针对NS5的筛选。此外,还进行了更高穷举度的重新对接和相互作用分析,最终确定了前四种命中物(135398658、5281675、119394 和 969516),其结果与对照组辛弗林(SFG)相当。经过分子动力学模拟,135398658 的 RMSD(0.4-0.5 nm)最小,氢键数量最多(8 个氢键),仅次于对照组,而 5281675 和 969516 的氢键数量与对照组相当。这些化合物显示出与催化位点残基 GLU111 和 ASP131 的直接相互作用,此外,这些化合物还显示出稳定的复合物形成,如主成分分析和自由能图谱所示。135398658 的总结合自由能(ΔGTotal = -36.56 kcal/mol)低于对照组,而 5281675 的值与对照组相当(ΔGTotal = -34.1 kcal/mol)。总之,本研究的目的是找出能抑制 NS5 功能的植物化学物质,以便进一步通过实验测试来治疗登革热病毒(DENV)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biomolecular Structure & Dynamics
Journal of Biomolecular Structure & Dynamics 生物-生化与分子生物学
CiteScore
8.90
自引率
9.10%
发文量
597
审稿时长
2 months
期刊介绍: The Journal of Biomolecular Structure and Dynamics welcomes manuscripts on biological structure, dynamics, interactions and expression. The Journal is one of the leading publications in high end computational science, atomic structural biology, bioinformatics, virtual drug design, genomics and biological networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信