Using Connected Vehicle Trajectory Data to Evaluate the Effects of Speeding

IF 4.6 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Jorge Ugan;Mohamed Abdel-Aty;Zubayer Islam
{"title":"Using Connected Vehicle Trajectory Data to Evaluate the Effects of Speeding","authors":"Jorge Ugan;Mohamed Abdel-Aty;Zubayer Islam","doi":"10.1109/OJITS.2023.3341962","DOIUrl":null,"url":null,"abstract":"Speeding remains a key factor in traffic fatalities, prompting transportation agencies to propose speed management solutions. While studies have examined speeding percentages above limits, few address its impact on individual journeys. Most studies rely on detector speed data, lacking route insights. This research employs connected vehicle trajectory data to analyze driver paths and variables, predicting speeding levels with various learning models. Extreme Gradient Boosting performed best, achieving 75.6% accuracy. This model elucidates how journey factors influence speeding and forecasts high-speed zones. Results reveal a driver’s total travel time significantly affects speeding, along with environmental features like residential area proportions. These findings aid transportation agencies in understanding trip-specific speeding factors, potentially informing better road safety measures.","PeriodicalId":100631,"journal":{"name":"IEEE Open Journal of Intelligent Transportation Systems","volume":"5 ","pages":"16-28"},"PeriodicalIF":4.6000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10354062","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Intelligent Transportation Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10354062/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Speeding remains a key factor in traffic fatalities, prompting transportation agencies to propose speed management solutions. While studies have examined speeding percentages above limits, few address its impact on individual journeys. Most studies rely on detector speed data, lacking route insights. This research employs connected vehicle trajectory data to analyze driver paths and variables, predicting speeding levels with various learning models. Extreme Gradient Boosting performed best, achieving 75.6% accuracy. This model elucidates how journey factors influence speeding and forecasts high-speed zones. Results reveal a driver’s total travel time significantly affects speeding, along with environmental features like residential area proportions. These findings aid transportation agencies in understanding trip-specific speeding factors, potentially informing better road safety measures.
利用联网车辆轨迹数据评估超速的影响
超速仍然是造成交通事故死亡的一个关键因素,促使交通机构提出速度管理解决方案。虽然有研究对超速百分比进行了研究,但很少有研究涉及超速对个人行程的影响。大多数研究依赖于检测器速度数据,缺乏对路线的深入了解。本研究利用互联车辆轨迹数据分析驾驶员路径和变量,并通过各种学习模型预测超速水平。极端梯度提升模型表现最佳,准确率达到 75.6%。该模型阐明了行程因素对超速的影响,并预测了高速区域。结果显示,驾驶员的总行程时间以及住宅区比例等环境特征对超速有显著影响。这些发现有助于交通机构了解特定行程中的超速因素,从而有可能为更好的道路安全措施提供信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信