Fast computation of highly oscillatory Bessel transforms

IF 1.4 Q2 MATHEMATICS, APPLIED
Guidong Liu , Zhenhua Xu
{"title":"Fast computation of highly oscillatory Bessel transforms","authors":"Guidong Liu ,&nbsp;Zhenhua Xu","doi":"10.1016/j.rinam.2023.100429","DOIUrl":null,"url":null,"abstract":"<div><p>This study focuses on the efficient and precise computation of Bessel transforms, defined as <span><math><mrow><msubsup><mrow><mo>∫</mo></mrow><mrow><mi>a</mi></mrow><mrow><mi>b</mi></mrow></msubsup><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><msub><mrow><mi>J</mi></mrow><mrow><mi>ν</mi></mrow></msub><mrow><mo>(</mo><mi>ω</mi><mi>x</mi><mo>)</mo></mrow><mspace></mspace><mi>d</mi><mi>x</mi></mrow></math></span>. Exploiting the integral representation of <span><math><mrow><msub><mrow><mi>J</mi></mrow><mrow><mi>ν</mi></mrow></msub><mrow><mo>(</mo><mi>ω</mi><mi>x</mi><mo>)</mo></mrow></mrow></math></span>, these Bessel transformations are reformulated into the oscillatory integrals of Fourier-type. When <span><math><mrow><mi>a</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span>, these Fourier-type integrals are transformed through distinct complex integration paths for cases with <span><math><mrow><mi>b</mi><mo>&lt;</mo><mo>+</mo><mi>∞</mi></mrow></math></span> and <span><math><mrow><mi>b</mi><mo>=</mo><mo>+</mo><mi>∞</mi></mrow></math></span>. Subsequently, we approximate these integrals using the generalized Gauss–Laguerre rule and provide error estimates. This approach is further extended to situations where <span><math><mrow><mi>a</mi><mo>=</mo><mn>0</mn></mrow></math></span> by partitioning the integral’s interval into two separate subintervals. Several numerical experiments are provided to demonstrate the efficiency and accuracy of the proposed algorithms.</p></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"21 ","pages":"Article 100429"},"PeriodicalIF":1.4000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590037423000754/pdfft?md5=47df06343bb9f2b65ccf6a55c8898ac1&pid=1-s2.0-S2590037423000754-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037423000754","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This study focuses on the efficient and precise computation of Bessel transforms, defined as abf(x)Jν(ωx)dx. Exploiting the integral representation of Jν(ωx), these Bessel transformations are reformulated into the oscillatory integrals of Fourier-type. When a>0, these Fourier-type integrals are transformed through distinct complex integration paths for cases with b<+ and b=+. Subsequently, we approximate these integrals using the generalized Gauss–Laguerre rule and provide error estimates. This approach is further extended to situations where a=0 by partitioning the integral’s interval into two separate subintervals. Several numerical experiments are provided to demonstrate the efficiency and accuracy of the proposed algorithms.

高振荡贝塞尔变换的快速计算
本研究的重点是贝塞尔变换的高效精确计算,其定义为 ∫abf(x)Jν(ωx)dx。利用 Jν(ωx)的积分表示,这些贝塞尔变换被重新表述为傅里叶型振荡积分。当 a>0 时,在 b<+∞ 和 b=+∞ 的情况下,这些傅里叶型积分通过不同的复积分路径进行变换。随后,我们使用广义高斯-拉盖尔法则对这些积分进行近似,并提供误差估计。通过将积分区间划分为两个独立的子区间,这种方法进一步扩展到了 a=0 的情况。我们提供了几个数值实验来证明所提算法的效率和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信