{"title":"A Cloud-Edge-Based Multi-Objective Task Scheduling Approach for Smart Manufacturing Lines","authors":"Huayi Yin, Xindong Huang, Erzhong Cao","doi":"10.1007/s10723-023-09723-5","DOIUrl":null,"url":null,"abstract":"<p>The number of task demands created by smart terminals is rising dramatically because of the increasing usage of industrial Internet technologies in intelligent production lines. Speed of response is vital when dealing with such large activities. The current work needs to work with the task scheduling flow of smart manufacturing lines. The proposed method addresses the limitations of the current approach, particularly in the context of task scheduling and task scheduling flow within intelligent production lines. This study concentrates on solving the multi-objective task scheduling challenge in intelligent manufacturing by introducing a task scheduling approach based on job prioritization. To achieve this, a multi-objective task scheduling mechanism was developed, aiming to reduce service latency and energy consumption. This mechanism was integrated into a cloud-edge computing framework for intelligent production lines. The task scheduling strategy and task flow scheduling were optimized using Particle Swarm Optimization (PSO) and Gravitational Search Algorithm (GSA). Lastly, thorough simulation studies evaluate Multi-PSG, demonstrating that it beats every other algorithm regarding job completion rate. The completion rate of all tasks is greater than 90% when the number of nodes exceeds 10, which satisfies the real-time demands of the related tasks in the smart manufacturing processes. The method also performs better than other methods regarding power usage and maximum completion rate.</p>","PeriodicalId":54817,"journal":{"name":"Journal of Grid Computing","volume":"70 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Grid Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10723-023-09723-5","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The number of task demands created by smart terminals is rising dramatically because of the increasing usage of industrial Internet technologies in intelligent production lines. Speed of response is vital when dealing with such large activities. The current work needs to work with the task scheduling flow of smart manufacturing lines. The proposed method addresses the limitations of the current approach, particularly in the context of task scheduling and task scheduling flow within intelligent production lines. This study concentrates on solving the multi-objective task scheduling challenge in intelligent manufacturing by introducing a task scheduling approach based on job prioritization. To achieve this, a multi-objective task scheduling mechanism was developed, aiming to reduce service latency and energy consumption. This mechanism was integrated into a cloud-edge computing framework for intelligent production lines. The task scheduling strategy and task flow scheduling were optimized using Particle Swarm Optimization (PSO) and Gravitational Search Algorithm (GSA). Lastly, thorough simulation studies evaluate Multi-PSG, demonstrating that it beats every other algorithm regarding job completion rate. The completion rate of all tasks is greater than 90% when the number of nodes exceeds 10, which satisfies the real-time demands of the related tasks in the smart manufacturing processes. The method also performs better than other methods regarding power usage and maximum completion rate.
期刊介绍:
Grid Computing is an emerging technology that enables large-scale resource sharing and coordinated problem solving within distributed, often loosely coordinated groups-what are sometimes termed "virtual organizations. By providing scalable, secure, high-performance mechanisms for discovering and negotiating access to remote resources, Grid technologies promise to make it possible for scientific collaborations to share resources on an unprecedented scale, and for geographically distributed groups to work together in ways that were previously impossible. Similar technologies are being adopted within industry, where they serve as important building blocks for emerging service provider infrastructures.
Even though the advantages of this technology for classes of applications have been acknowledged, research in a variety of disciplines, including not only multiple domains of computer science (networking, middleware, programming, algorithms) but also application disciplines themselves, as well as such areas as sociology and economics, is needed to broaden the applicability and scope of the current body of knowledge.