Tingwei Gu, Shengjun Yuan, Lin Gu, Xiaodong Sun, Yanping Zeng, Lu Wang
{"title":"Research on dynamic calibration and compensation method of strain-gauge type force sensor","authors":"Tingwei Gu, Shengjun Yuan, Lin Gu, Xiaodong Sun, Yanping Zeng, Lu Wang","doi":"10.1108/sr-08-2023-0330","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>This paper aims to propose an effective dynamic calibration and compensation method to solve the problem that the statically calibrated force sensor would produce large dynamic errors when measuring dynamic signals.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>The dynamic characteristics of the force sensor are analyzed by modal analysis and negative step dynamic force calibration test, and the dynamic mathematical model of the force sensor is identified based on a generalized least squares method with a special whitening filter. Then, a compensation unit is constructed to compensate the dynamic characteristics of the force measurement system, and the compensation effect is verified based on the step and knock excitation signals.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>The dynamic characteristics of the force sensor obtained by modal analysis and dynamic calibration test are consistent, and the time and frequency domain characteristics of the identified dynamic mathematical model agree well with the actual measurement results. After dynamic compensation, the dynamic characteristics of the force sensor in the frequency domain are obviously improved, and the effective operating frequency band is widened from 500 Hz to 1,560 Hz. In addition, in the time domain, the rise time of the step response signal is reduced from 0.29 ms to 0.17 ms, and the overshoot decreases from 26.6% to 9.8%.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>An effective dynamic calibration and compensation method is proposed in this paper, which can be used to improve the dynamic performance of the strain-gauge-type force sensor and reduce the dynamic measurement error of the force measurement system.</p><!--/ Abstract__block -->","PeriodicalId":49540,"journal":{"name":"Sensor Review","volume":"20 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensor Review","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/sr-08-2023-0330","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
This paper aims to propose an effective dynamic calibration and compensation method to solve the problem that the statically calibrated force sensor would produce large dynamic errors when measuring dynamic signals.
Design/methodology/approach
The dynamic characteristics of the force sensor are analyzed by modal analysis and negative step dynamic force calibration test, and the dynamic mathematical model of the force sensor is identified based on a generalized least squares method with a special whitening filter. Then, a compensation unit is constructed to compensate the dynamic characteristics of the force measurement system, and the compensation effect is verified based on the step and knock excitation signals.
Findings
The dynamic characteristics of the force sensor obtained by modal analysis and dynamic calibration test are consistent, and the time and frequency domain characteristics of the identified dynamic mathematical model agree well with the actual measurement results. After dynamic compensation, the dynamic characteristics of the force sensor in the frequency domain are obviously improved, and the effective operating frequency band is widened from 500 Hz to 1,560 Hz. In addition, in the time domain, the rise time of the step response signal is reduced from 0.29 ms to 0.17 ms, and the overshoot decreases from 26.6% to 9.8%.
Originality/value
An effective dynamic calibration and compensation method is proposed in this paper, which can be used to improve the dynamic performance of the strain-gauge-type force sensor and reduce the dynamic measurement error of the force measurement system.
期刊介绍:
Sensor Review publishes peer reviewed state-of-the-art articles and specially commissioned technology reviews. Each issue of this multidisciplinary journal includes high quality original content covering all aspects of sensors and their applications, and reflecting the most interesting and strategically important research and development activities from around the world. Because of this, readers can stay at the very forefront of high technology sensor developments.
Emphasis is placed on detailed independent regular and review articles identifying the full range of sensors currently available for specific applications, as well as highlighting those areas of technology showing great potential for the future. The journal encourages authors to consider the practical and social implications of their articles.
All articles undergo a rigorous double-blind peer review process which involves an initial assessment of suitability of an article for the journal followed by sending it to, at least two reviewers in the field if deemed suitable.
Sensor Review’s coverage includes, but is not restricted to:
Mechanical sensors – position, displacement, proximity, velocity, acceleration, vibration, force, torque, pressure, and flow sensors
Electric and magnetic sensors – resistance, inductive, capacitive, piezoelectric, eddy-current, electromagnetic, photoelectric, and thermoelectric sensors
Temperature sensors, infrared sensors, humidity sensors
Optical, electro-optical and fibre-optic sensors and systems, photonic sensors
Biosensors, wearable and implantable sensors and systems, immunosensors
Gas and chemical sensors and systems, polymer sensors
Acoustic and ultrasonic sensors
Haptic sensors and devices
Smart and intelligent sensors and systems
Nanosensors, NEMS, MEMS, and BioMEMS
Quantum sensors
Sensor systems: sensor data fusion, signals, processing and interfacing, signal conditioning.