L. Xue, B. Cui, Z. Zhu, R. Wang, Z. Yang, J. Hu, X. Su
{"title":"Effect of the Guide Vane on the Hydraulic Stability of a Low-head, Large-discharge Industrial Hydraulic Turbine","authors":"L. Xue, B. Cui, Z. Zhu, R. Wang, Z. Yang, J. Hu, X. Su","doi":"10.47176/jafm.17.3.2056","DOIUrl":null,"url":null,"abstract":"The hydraulic turbine has been used extensively in the field of energy conservation. For turbines that have low heads and large discharge, improving recovery efficiency and stability is crucial due to their significant hydraulic impact. This paper provides a detailed analysis of the correlation between the influence of radial guide vanes on the stability of low-head, large-discharge turbines focusing on hydraulic performance and energy dissipation before and after the implementation of guide vanes. Moreover, in this paper, two types of turbines, with and without guide vanes, were designed considering the desulfurization scenario. Hydraulic efficiency, radial force, and internal flow field mechanics were numerically studied, and validated through experiments. The results reveal that the working range of the hydraulic turbine could be widened and the energy recovery efficiency improved by a maximum of 3.11% in the small flow rate under the action of guide vanes. Furthermore, it results in a substantial reduction in the radial force of the impeller. Subsequently, the variation in entropy production of different components under full flow rate conditions was compared between the models with and without guide vanes. The total energy consumption decreases sharply under overall working conditions due to the flow control ability of guide vanes affecting the flow state. The entropy production rate of the impeller remains the largest regardless of the presence of a guide vane in the turbine. The vortices inside the guide vanes increase obviously with the flow rate increase.","PeriodicalId":49041,"journal":{"name":"Journal of Applied Fluid Mechanics","volume":"48 5","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.47176/jafm.17.3.2056","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
The hydraulic turbine has been used extensively in the field of energy conservation. For turbines that have low heads and large discharge, improving recovery efficiency and stability is crucial due to their significant hydraulic impact. This paper provides a detailed analysis of the correlation between the influence of radial guide vanes on the stability of low-head, large-discharge turbines focusing on hydraulic performance and energy dissipation before and after the implementation of guide vanes. Moreover, in this paper, two types of turbines, with and without guide vanes, were designed considering the desulfurization scenario. Hydraulic efficiency, radial force, and internal flow field mechanics were numerically studied, and validated through experiments. The results reveal that the working range of the hydraulic turbine could be widened and the energy recovery efficiency improved by a maximum of 3.11% in the small flow rate under the action of guide vanes. Furthermore, it results in a substantial reduction in the radial force of the impeller. Subsequently, the variation in entropy production of different components under full flow rate conditions was compared between the models with and without guide vanes. The total energy consumption decreases sharply under overall working conditions due to the flow control ability of guide vanes affecting the flow state. The entropy production rate of the impeller remains the largest regardless of the presence of a guide vane in the turbine. The vortices inside the guide vanes increase obviously with the flow rate increase.
期刊介绍:
The Journal of Applied Fluid Mechanics (JAFM) is an international, peer-reviewed journal which covers a wide range of theoretical, numerical and experimental aspects in fluid mechanics. The emphasis is on the applications in different engineering fields rather than on pure mathematical or physical aspects in fluid mechanics. Although many high quality journals pertaining to different aspects of fluid mechanics presently exist, research in the field is rapidly escalating. The motivation for this new fluid mechanics journal is driven by the following points: (1) there is a need to have an e-journal accessible to all fluid mechanics researchers, (2) scientists from third- world countries need a venue that does not incur publication costs, (3) quality papers deserve rapid and fast publication through an efficient peer review process, and (4) an outlet is needed for rapid dissemination of fluid mechanics conferences held in Asian countries. Pertaining to this latter point, there presently exist some excellent conferences devoted to the promotion of fluid mechanics in the region such as the Asian Congress of Fluid Mechanics which began in 1980 and nominally takes place in one of the Asian countries every two years. We hope that the proposed journal provides and additional impetus for promoting applied fluids research and associated activities in this continent. The journal is under the umbrella of the Physics Society of Iran with the collaboration of Isfahan University of Technology (IUT) .