High areal-capacitance based extremely stable flexible supercapacitors using binder-free exfoliated graphite paper electrode

IF 1.9 4区 工程技术 Q4 ENERGY & FUELS
Jitendra Kumar Yadav, B. Rani, Ajay Tiwari, Ambesh Dixit
{"title":"High areal-capacitance based extremely stable flexible supercapacitors using binder-free exfoliated graphite paper electrode","authors":"Jitendra Kumar Yadav, B. Rani, Ajay Tiwari, Ambesh Dixit","doi":"10.1063/5.0184499","DOIUrl":null,"url":null,"abstract":"The highly porous and binder-free flexible paper electrodes can enhance the specific capacitance of symmetric supercapacitors (SCs) due to their large surface and effective ion diffusion pathways. We synthesized the exfoliated graphite (ExG) by the thermal exfoliation method of chemically treated graphite flakes and compressed it into a paper-like thin sheet (binder-free) of ∼0.15 mm thickness. The coin cell SCs with copper (Cu) and stainless steel (SS) as current collectors have been fabricated for the electrochemical measurement. The cyclic voltammetry and galvanostatic charge/discharge measurements are investigated at various scan rates and current densities. The SCs with Cu foil as a current collector perform better than SS-based SCs. The Cu current collector-based SCs showed a specific capacitance of 37.08 mF cm−2, whereas it was ∼29.98 mF cm−2 for SS-based SCs at a 0.01 V s−1 scan rate across a 0–0.6 V potential window. Approximately no degradation in charge storage capacity for more than 15 000 cycles at 0.1 V s−1 shows the ultra-stability of the flexible ExG-based binder-free electrodes. A digital watch is powered using the fabricated pouch cell supercapacitor with copper-based current collectors to show the potential of SCs.","PeriodicalId":16953,"journal":{"name":"Journal of Renewable and Sustainable Energy","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Renewable and Sustainable Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0184499","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The highly porous and binder-free flexible paper electrodes can enhance the specific capacitance of symmetric supercapacitors (SCs) due to their large surface and effective ion diffusion pathways. We synthesized the exfoliated graphite (ExG) by the thermal exfoliation method of chemically treated graphite flakes and compressed it into a paper-like thin sheet (binder-free) of ∼0.15 mm thickness. The coin cell SCs with copper (Cu) and stainless steel (SS) as current collectors have been fabricated for the electrochemical measurement. The cyclic voltammetry and galvanostatic charge/discharge measurements are investigated at various scan rates and current densities. The SCs with Cu foil as a current collector perform better than SS-based SCs. The Cu current collector-based SCs showed a specific capacitance of 37.08 mF cm−2, whereas it was ∼29.98 mF cm−2 for SS-based SCs at a 0.01 V s−1 scan rate across a 0–0.6 V potential window. Approximately no degradation in charge storage capacity for more than 15 000 cycles at 0.1 V s−1 shows the ultra-stability of the flexible ExG-based binder-free electrodes. A digital watch is powered using the fabricated pouch cell supercapacitor with copper-based current collectors to show the potential of SCs.
使用无粘合剂剥离石墨纸电极的基于高等值电容的极其稳定的柔性超级电容器
高多孔、无粘结剂的柔性纸电极因其大表面和有效的离子扩散途径,可提高对称超级电容器(SC)的比电容。我们采用热剥离法合成了经过化学处理的剥离石墨(ExG)薄片,并将其压制成厚度为 0.15 毫米的纸状薄片(无粘结剂)。以铜(Cu)和不锈钢(SS)为集流体的纽扣电池 SC 已制作完成,用于电化学测量。在不同的扫描速率和电流密度下进行了循环伏安法和电静态充放电测量。以铜箔为集流器的 SC 性能优于以 SS 为集流器的 SC。以 0.01 V s-1 的扫描速率扫描 0-0.6 V 电位窗口时,基于铜电流收集器的 SC 的比电容为 37.08 mF cm-2,而基于 SS 的 SC 的比电容为 29.98 mF cm-2。在 0.1 V s-1 的条件下,电荷存储容量在超过 15000 个循环后几乎没有下降,这表明基于 ExG 的柔性无粘结剂电极具有超强稳定性。为了展示超级电容器的潜力,我们利用制作的袋式电池超级电容器和铜基集流器为一块电子手表供电。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Renewable and Sustainable Energy
Journal of Renewable and Sustainable Energy ENERGY & FUELS-ENERGY & FUELS
CiteScore
4.30
自引率
12.00%
发文量
122
审稿时长
4.2 months
期刊介绍: The Journal of Renewable and Sustainable Energy (JRSE) is an interdisciplinary, peer-reviewed journal covering all areas of renewable and sustainable energy relevant to the physical science and engineering communities. The interdisciplinary approach of the publication ensures that the editors draw from researchers worldwide in a diverse range of fields. Topics covered include: Renewable energy economics and policy Renewable energy resource assessment Solar energy: photovoltaics, solar thermal energy, solar energy for fuels Wind energy: wind farms, rotors and blades, on- and offshore wind conditions, aerodynamics, fluid dynamics Bioenergy: biofuels, biomass conversion, artificial photosynthesis Distributed energy generation: rooftop PV, distributed fuel cells, distributed wind, micro-hydrogen power generation Power distribution & systems modeling: power electronics and controls, smart grid Energy efficient buildings: smart windows, PV, wind, power management Energy conversion: flexoelectric, piezoelectric, thermoelectric, other technologies Energy storage: batteries, supercapacitors, hydrogen storage, other fuels Fuel cells: proton exchange membrane cells, solid oxide cells, hybrid fuel cells, other Marine and hydroelectric energy: dams, tides, waves, other Transportation: alternative vehicle technologies, plug-in technologies, other Geothermal energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信