Adaptive digital twins for energy-intensive industries and their local communities

IF 3 Q2 ENGINEERING, CHEMICAL
Timothy Gordon Walmsley , Panos Patros , Wei Yu , Brent R. Young , Stephen Burroughs , Mark Apperley , James K. Carson , Isuru A. Udugama , Hattachai Aeowjaroenlap , Martin J. Atkins , Michael R. W. Walmsley
{"title":"Adaptive digital twins for energy-intensive industries and their local communities","authors":"Timothy Gordon Walmsley ,&nbsp;Panos Patros ,&nbsp;Wei Yu ,&nbsp;Brent R. Young ,&nbsp;Stephen Burroughs ,&nbsp;Mark Apperley ,&nbsp;James K. Carson ,&nbsp;Isuru A. Udugama ,&nbsp;Hattachai Aeowjaroenlap ,&nbsp;Martin J. Atkins ,&nbsp;Michael R. W. Walmsley","doi":"10.1016/j.dche.2024.100139","DOIUrl":null,"url":null,"abstract":"<div><p>Digital Twins (DTs) are high-fidelity virtual models that behave-like, look-like and connect-to a physical system. In this work, the physical systems are operations and processes from energy-intensive industrial plants and their local communities. The creation of DTs demands expertise not just in engineering, but also in computer science, data science, and artificial intelligence. Here, we introduce the Adaptive Digital Twins (ADT) concept, anchored in five attributes inspired by the self-adaptive systems field from software engineering. These attributes are self-learning, self-optimizing, self-evolving, self-monitoring, and self-protection. This new approach merges cutting-edge computing with pragmatic engineering needs. ADTs can enhance decision-making in both the design phase and real-time operation of industrial facilities and allow for versatile 'what-if' scenario simulations. Seven applications within the energy-intensive industries are described where ADTs could be transformative.</p></div>","PeriodicalId":72815,"journal":{"name":"Digital Chemical Engineering","volume":"10 ","pages":"Article 100139"},"PeriodicalIF":3.0000,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772508124000012/pdfft?md5=afa95153df0ac493e8b74986aab47748&pid=1-s2.0-S2772508124000012-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772508124000012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Digital Twins (DTs) are high-fidelity virtual models that behave-like, look-like and connect-to a physical system. In this work, the physical systems are operations and processes from energy-intensive industrial plants and their local communities. The creation of DTs demands expertise not just in engineering, but also in computer science, data science, and artificial intelligence. Here, we introduce the Adaptive Digital Twins (ADT) concept, anchored in five attributes inspired by the self-adaptive systems field from software engineering. These attributes are self-learning, self-optimizing, self-evolving, self-monitoring, and self-protection. This new approach merges cutting-edge computing with pragmatic engineering needs. ADTs can enhance decision-making in both the design phase and real-time operation of industrial facilities and allow for versatile 'what-if' scenario simulations. Seven applications within the energy-intensive industries are described where ADTs could be transformative.

能源密集型工业及其当地社区的自适应数字双胞胎
数字孪生(DT)是一种高保真虚拟模型,其行为、外观与物理系统相似,并与物理系统相连。在这项工作中,物理系统是能源密集型工业工厂及其当地社区的运营和流程。创建 DT 不仅需要工程学方面的专业知识,还需要计算机科学、数据科学和人工智能方面的专业知识。在此,我们介绍自适应数字孪生系统(ADT)的概念,其基础是受软件工程自适应系统领域启发的五个属性。这些属性是自学习、自优化、自进化、自监测和自保护。这种新方法融合了最前沿的计算技术和实用的工程需求。ADT 可以在工业设施的设计阶段和实时运行过程中加强决策制定,并允许进行多功能的 "假设 "情景模拟。本文介绍了 ADT 在能源密集型工业中的七种应用,在这些应用中,ADT 可发挥变革性作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信