Matteo Bramati, M. Schön, Daniel Schulz, Vasileios Savvakis, Yongtan Wang, J. Bange, A. Platis
{"title":"A Versatile Calibration Method for Rotary-Wing UAS as Wind Measurement Systems","authors":"Matteo Bramati, M. Schön, Daniel Schulz, Vasileios Savvakis, Yongtan Wang, J. Bange, A. Platis","doi":"10.1175/jtech-d-23-0010.1","DOIUrl":null,"url":null,"abstract":"\nThe use of small uncrewed aircraft systems (UAS) can effectively capture the wind profile in the lower atmospheric boundary layer. This study presents a calibration process to estimate the horizontal wind vector using a rotary-wing UAS in hovering conditions. This procedure does not require wind tunnels or meteorological masts, only the data from the flight control unit and a specific set of calibration flights. A model based on the UAS drag coefficient was proposed and compared to a traditional approach. Validation flights at the German Weather Service MOL-RAO observatory showed that the system can accurately predict wind speed and direction. A modified DJI S900 hexacopter with a Styrofoam sphere casing was used for the study and calibrated for wind speeds between 1 and 14 m s−1. Power spectral density analysis showed the system’s ability to resolve atmospheric eddies up to 0.1 Hz. The overall root-mean-square error was less than 0.7 m s−1 for wind speed and less than 8° for wind direction.","PeriodicalId":15074,"journal":{"name":"Journal of Atmospheric and Oceanic Technology","volume":"75 5","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atmospheric and Oceanic Technology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/jtech-d-23-0010.1","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, OCEAN","Score":null,"Total":0}
引用次数: 0
Abstract
The use of small uncrewed aircraft systems (UAS) can effectively capture the wind profile in the lower atmospheric boundary layer. This study presents a calibration process to estimate the horizontal wind vector using a rotary-wing UAS in hovering conditions. This procedure does not require wind tunnels or meteorological masts, only the data from the flight control unit and a specific set of calibration flights. A model based on the UAS drag coefficient was proposed and compared to a traditional approach. Validation flights at the German Weather Service MOL-RAO observatory showed that the system can accurately predict wind speed and direction. A modified DJI S900 hexacopter with a Styrofoam sphere casing was used for the study and calibrated for wind speeds between 1 and 14 m s−1. Power spectral density analysis showed the system’s ability to resolve atmospheric eddies up to 0.1 Hz. The overall root-mean-square error was less than 0.7 m s−1 for wind speed and less than 8° for wind direction.
期刊介绍:
The Journal of Atmospheric and Oceanic Technology (JTECH) publishes research describing instrumentation and methods used in atmospheric and oceanic research, including remote sensing instruments; measurements, validation, and data analysis techniques from satellites, aircraft, balloons, and surface-based platforms; in situ instruments, measurements, and methods for data acquisition, analysis, and interpretation and assimilation in numerical models; and information systems and algorithms.