FedACT: An adaptive chained training approach for federated learning in computing power networks

IF 7.5 2区 计算机科学 Q1 TELECOMMUNICATIONS
Min Wei , Qianying Zhao , Bo Lei , Yizhuo Cai , Yushun Zhang , Xing Zhang , Wenbo Wang
{"title":"FedACT: An adaptive chained training approach for federated learning in computing power networks","authors":"Min Wei ,&nbsp;Qianying Zhao ,&nbsp;Bo Lei ,&nbsp;Yizhuo Cai ,&nbsp;Yushun Zhang ,&nbsp;Xing Zhang ,&nbsp;Wenbo Wang","doi":"10.1016/j.dcan.2023.12.007","DOIUrl":null,"url":null,"abstract":"<div><div>Federated Learning (FL) is a novel distributed machine learning methodology that addresses large-scale parallel computing challenges while safeguarding data security. However, the traditional FL model in communication scenarios, whether for uplink or downlink communications, may give rise to several network problems, such as bandwidth occupation, additional network latency, and bandwidth fragmentation. In this paper, we propose an adaptive chained training approach (FedACT) for FL in computing power networks. First, a Computation-driven Clustering Strategy (CCS) is designed. The server clusters clients by task processing delays to minimize waiting delays at the central server. Second, we propose a Genetic-Algorithm-based Sorting (GAS) method to optimize the order of clients participating in training. Finally, based on the table lookup and forwarding rules of the Segment Routing over IPv6 (SRv6) protocol, the sorting results of GAS are written into the SRv6 packet header, to control the order in which clients participate in model training. We conduct extensive experiments on two datasets of CIFAR-10 and MNIST, and the results demonstrate that the proposed algorithm offers improved accuracy, diminished communication costs, and reduced network delays.</div></div>","PeriodicalId":48631,"journal":{"name":"Digital Communications and Networks","volume":"10 6","pages":"Pages 1576-1589"},"PeriodicalIF":7.5000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Communications and Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352864823001839","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Federated Learning (FL) is a novel distributed machine learning methodology that addresses large-scale parallel computing challenges while safeguarding data security. However, the traditional FL model in communication scenarios, whether for uplink or downlink communications, may give rise to several network problems, such as bandwidth occupation, additional network latency, and bandwidth fragmentation. In this paper, we propose an adaptive chained training approach (FedACT) for FL in computing power networks. First, a Computation-driven Clustering Strategy (CCS) is designed. The server clusters clients by task processing delays to minimize waiting delays at the central server. Second, we propose a Genetic-Algorithm-based Sorting (GAS) method to optimize the order of clients participating in training. Finally, based on the table lookup and forwarding rules of the Segment Routing over IPv6 (SRv6) protocol, the sorting results of GAS are written into the SRv6 packet header, to control the order in which clients participate in model training. We conduct extensive experiments on two datasets of CIFAR-10 and MNIST, and the results demonstrate that the proposed algorithm offers improved accuracy, diminished communication costs, and reduced network delays.
FedACT:用于计算能力网络联合学习的自适应链式训练方法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Digital Communications and Networks
Digital Communications and Networks Computer Science-Hardware and Architecture
CiteScore
12.80
自引率
5.10%
发文量
915
审稿时长
30 weeks
期刊介绍: Digital Communications and Networks is a prestigious journal that emphasizes on communication systems and networks. We publish only top-notch original articles and authoritative reviews, which undergo rigorous peer-review. We are proud to announce that all our articles are fully Open Access and can be accessed on ScienceDirect. Our journal is recognized and indexed by eminent databases such as the Science Citation Index Expanded (SCIE) and Scopus. In addition to regular articles, we may also consider exceptional conference papers that have been significantly expanded. Furthermore, we periodically release special issues that focus on specific aspects of the field. In conclusion, Digital Communications and Networks is a leading journal that guarantees exceptional quality and accessibility for researchers and scholars in the field of communication systems and networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信