Taoran Liu , Hongfei Ye , Jianjing Zheng , Yao Zheng , Jianjun Chen
{"title":"Advancing Front Mesh Generation on Dirty Composite Surfaces","authors":"Taoran Liu , Hongfei Ye , Jianjing Zheng , Yao Zheng , Jianjun Chen","doi":"10.1016/j.cad.2024.103683","DOIUrl":null,"url":null,"abstract":"<div><p><span>Computer-aided design (CAD) models usually contain many errors between neighboring surfaces, such as slivers, gaps, and overlaps. To clean up such models, virtual operations have been suggested to merge multiple neighboring CAD surfaces into a single composite surface. However, it remains a challenge to generate a quality mesh on thereby formed dirty composite surfaces. In this paper, we propose a novel advancing front technique (AFT) that can treat such composite surfaces by developing two new schemes to enhance the traditional AFT. Firstly, for each composite surface, we define a </span>parametric<span> plane by using a combined set of the tessellation on this composite surface. Simplicial complex<span><span> augmentation framework reparameterization approach is suggested since it can treat tessellations containing gap and overlap after introducing a pre-processing step. Meanwhile, this approach can ensure a </span>bijective mapping between the parametric and physical space. The front intersection check can thus be performed on the parametric plane robustly. Secondly, the indirect and direct approaches are alternatively employed to calculate ideal points in different circumstances. In the circumstance that the possible new element is completely contained in one single CAD surface, the ideal point is calculated on the intrinsic parametric plane of the surface; otherwise, the ideal point is directly calculated on the physical space. We avoid using the geometry defined on the tessellation since we prefer to getting a mesh respecting the original CAD model rather than its tessellation counterpart. Presently, the developed new schemes have been incorporated into our in-house surface mesher, and their efficiency and effectiveness have been demonstrated through a comparison with state-of-the-art commercial tools (e.g., COMSOL Multiphysics) and AFT algorithm, using CAD models of industry-level complexity.</span></span></p></div>","PeriodicalId":50632,"journal":{"name":"Computer-Aided Design","volume":"169 ","pages":"Article 103683"},"PeriodicalIF":3.0000,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer-Aided Design","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010448524000101","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Computer-aided design (CAD) models usually contain many errors between neighboring surfaces, such as slivers, gaps, and overlaps. To clean up such models, virtual operations have been suggested to merge multiple neighboring CAD surfaces into a single composite surface. However, it remains a challenge to generate a quality mesh on thereby formed dirty composite surfaces. In this paper, we propose a novel advancing front technique (AFT) that can treat such composite surfaces by developing two new schemes to enhance the traditional AFT. Firstly, for each composite surface, we define a parametric plane by using a combined set of the tessellation on this composite surface. Simplicial complex augmentation framework reparameterization approach is suggested since it can treat tessellations containing gap and overlap after introducing a pre-processing step. Meanwhile, this approach can ensure a bijective mapping between the parametric and physical space. The front intersection check can thus be performed on the parametric plane robustly. Secondly, the indirect and direct approaches are alternatively employed to calculate ideal points in different circumstances. In the circumstance that the possible new element is completely contained in one single CAD surface, the ideal point is calculated on the intrinsic parametric plane of the surface; otherwise, the ideal point is directly calculated on the physical space. We avoid using the geometry defined on the tessellation since we prefer to getting a mesh respecting the original CAD model rather than its tessellation counterpart. Presently, the developed new schemes have been incorporated into our in-house surface mesher, and their efficiency and effectiveness have been demonstrated through a comparison with state-of-the-art commercial tools (e.g., COMSOL Multiphysics) and AFT algorithm, using CAD models of industry-level complexity.
期刊介绍:
Computer-Aided Design is a leading international journal that provides academia and industry with key papers on research and developments in the application of computers to design.
Computer-Aided Design invites papers reporting new research, as well as novel or particularly significant applications, within a wide range of topics, spanning all stages of design process from concept creation to manufacture and beyond.