A droplet-based electricity generator incorporating Kelvin water dropper with ultrahigh instantaneous power density

Droplet Pub Date : 2024-01-01 DOI:10.1002/dro2.91
Yang Li, Xuezhi Qin, Yawei Feng, Yuxin Song, Zhiran Yi, Huanxi Zheng, Peiyang Zhou, Chenyang Wu, Siyan Yang, Lili Wang, Pingan Zhu, Wanghuai Xu, Zuankai Wang
{"title":"A droplet-based electricity generator incorporating Kelvin water dropper with ultrahigh instantaneous power density","authors":"Yang Li,&nbsp;Xuezhi Qin,&nbsp;Yawei Feng,&nbsp;Yuxin Song,&nbsp;Zhiran Yi,&nbsp;Huanxi Zheng,&nbsp;Peiyang Zhou,&nbsp;Chenyang Wu,&nbsp;Siyan Yang,&nbsp;Lili Wang,&nbsp;Pingan Zhu,&nbsp;Wanghuai Xu,&nbsp;Zuankai Wang","doi":"10.1002/dro2.91","DOIUrl":null,"url":null,"abstract":"<p>Harvesting renewable water energy in various formats such as raindrops, waves, and evaporation is one of the key strategies for achieving global carbon neutrality. The recent decade has witnessed rapid advancement of the droplet-based electricity generator (DEG) with a continuous leap in the instantaneous output power density from 50 W/m<sup>2</sup> to several kW/m<sup>2</sup>. Despite this, further pushing the upper limit of the output performance of DEG is still constrained by low surface charge density and long precharging time. Here, we report a DEG incorporating the Kelvin water dropper (K-DEG) that can generate an ultrahigh instantaneous power density of 10<sup>5</sup> W/m<sup>2</sup> upon one droplet impinging. In this design, the Kelvin water dropper continuously replenishes the high density of surface charges on DEG, while DEG fully releases these surface charges into electric output. K-DEG with such a high output can directly light five 6-W commercial lamps and even charge a cellphone by using falling droplets.</p>","PeriodicalId":100381,"journal":{"name":"Droplet","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dro2.91","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Droplet","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/dro2.91","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Harvesting renewable water energy in various formats such as raindrops, waves, and evaporation is one of the key strategies for achieving global carbon neutrality. The recent decade has witnessed rapid advancement of the droplet-based electricity generator (DEG) with a continuous leap in the instantaneous output power density from 50 W/m2 to several kW/m2. Despite this, further pushing the upper limit of the output performance of DEG is still constrained by low surface charge density and long precharging time. Here, we report a DEG incorporating the Kelvin water dropper (K-DEG) that can generate an ultrahigh instantaneous power density of 105 W/m2 upon one droplet impinging. In this design, the Kelvin water dropper continuously replenishes the high density of surface charges on DEG, while DEG fully releases these surface charges into electric output. K-DEG with such a high output can directly light five 6-W commercial lamps and even charge a cellphone by using falling droplets.

Abstract Image

结合开尔文水滴器的液滴发电装置,具有超高瞬时功率密度
收集雨滴、海浪和蒸发等各种形式的可再生水能是实现全球碳中和的关键战略之一。近十年来,基于液滴的发电装置(DEG)发展迅速,瞬时输出功率密度从 50 W/m2 不断跃升至数千瓦/平方米。尽管如此,由于表面电荷密度低和预充电时间长,进一步提高液滴发电装置的输出性能上限仍然受到限制。在此,我们报告了一种结合了开尔文水滴器(K-DEG)的 DEG,它能在一个水滴撞击时产生 105 W/m2 的超高瞬时功率密度。在这种设计中,开尔文水滴器不断补充 DEG 上的高密度表面电荷,而 DEG 则将这些表面电荷完全释放为电力输出。K-DEG 具有如此高的输出功率,可以直接点亮 5 盏 6 瓦的商用灯具,甚至可以利用落下的水滴为手机充电。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信