{"title":"Classification of 𝒪_{∞}-Stable 𝒞*-Algebras","authors":"James Gabe","doi":"10.1090/memo/1461","DOIUrl":null,"url":null,"abstract":"<p>I present a proof of Kirchberg’s classification theorem: two separable, nuclear, <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper O Subscript normal infinity\">\n <mml:semantics>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">O</mml:mi>\n </mml:mrow>\n <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">\\mathcal O_\\infty</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-stable <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C Superscript asterisk\">\n <mml:semantics>\n <mml:msup>\n <mml:mi>C</mml:mi>\n <mml:mo>∗<!-- ∗ --></mml:mo>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">C^\\ast</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-algebras are stably isomorphic if and only if they are ideal-related <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K upper K\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>K</mml:mi>\n <mml:mi>K</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">KK</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-equivalent. In particular, this provides a more elementary proof of the Kirchberg–Phillips theorem which is isolated in the paper to increase readability of this important special case.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/memo/1461","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
I present a proof of Kirchberg’s classification theorem: two separable, nuclear, O∞\mathcal O_\infty-stable C∗C^\ast-algebras are stably isomorphic if and only if they are ideal-related KKKK-equivalent. In particular, this provides a more elementary proof of the Kirchberg–Phillips theorem which is isolated in the paper to increase readability of this important special case.
我提出了基希贝格分类定理的一个证明:当且仅当两个可分离的、核的、O ∞ \mathcal O_\infty -stable C ∗ C^\ast -gealbras 是理想相关的 K KK -equivalent 时,它们是稳定同构的。特别是,这为基希贝格-菲利普斯定理提供了一个更基本的证明,该定理在论文中被单独列出,以增加这一重要特例的可读性。