A. Alekseenko, S. Belenov, Dmitriy Mauer, E. Moguchikh, Irina Falina, Julia Bayan, I. Pankov, Danil Alekseenko, V. Guterman
{"title":"Activity of Platinum-Based Cathode Electrocatalysts in Oxygen Redaction for Proton-Exchange Membrane Fuel Cells: Influence of the Ionomer Content","authors":"A. Alekseenko, S. Belenov, Dmitriy Mauer, E. Moguchikh, Irina Falina, Julia Bayan, I. Pankov, Danil Alekseenko, V. Guterman","doi":"10.3390/inorganics12010023","DOIUrl":null,"url":null,"abstract":"Studying the ORR activity of platinum-based electrocatalysts is an urgent task in the development of materials for proton-exchange membrane fuel cells. The catalytic ink composition and the formation technique of a thin layer at the RDE play a significant role in studying ORR activity. The use of a polymer ionomer in the catalytic ink provides viscosity as well as proton conductivity. Nafion is widely used as an ionomer for research both at the RDE and in the MEA. The search for ionomers is a priority task in the development of the MEA components to replace Nafion. The study also considers the possibility of using the LF4-SK polymer as an alternative ionomer. The comparative results on the composition and techniques of applying the catalytic layer using LF4-SK and Nafion ionomers are presented, and the influence of the catalytic ink composition on the electrochemical characteristics of commercial platinum–carbon catalysts and a highly efficient platinum catalyst based on an N-doped carbon support is assessed.","PeriodicalId":13572,"journal":{"name":"Inorganics","volume":"112 36","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/inorganics12010023","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
Studying the ORR activity of platinum-based electrocatalysts is an urgent task in the development of materials for proton-exchange membrane fuel cells. The catalytic ink composition and the formation technique of a thin layer at the RDE play a significant role in studying ORR activity. The use of a polymer ionomer in the catalytic ink provides viscosity as well as proton conductivity. Nafion is widely used as an ionomer for research both at the RDE and in the MEA. The search for ionomers is a priority task in the development of the MEA components to replace Nafion. The study also considers the possibility of using the LF4-SK polymer as an alternative ionomer. The comparative results on the composition and techniques of applying the catalytic layer using LF4-SK and Nafion ionomers are presented, and the influence of the catalytic ink composition on the electrochemical characteristics of commercial platinum–carbon catalysts and a highly efficient platinum catalyst based on an N-doped carbon support is assessed.
期刊介绍:
Inorganics is an open access journal that covers all aspects of inorganic chemistry research. Topics include but are not limited to: synthesis and characterization of inorganic compounds, complexes and materials structure and bonding in inorganic molecular and solid state compounds spectroscopic, magnetic, physical and chemical properties of inorganic compounds chemical reactivity, physical properties and applications of inorganic compounds and materials mechanisms of inorganic reactions organometallic compounds inorganic cluster chemistry heterogenous and homogeneous catalytic reactions promoted by inorganic compounds thermodynamics and kinetics of significant new and known inorganic compounds supramolecular systems and coordination polymers bio-inorganic chemistry and applications of inorganic compounds in biological systems and medicine environmental and sustainable energy applications of inorganic compounds and materials MD