Mengzhen Li, Yanmin Yang, Zhaoyu Peng, Gengnian Liu
{"title":"Assessment of rock glaciers and their water storage in Guokalariju, Tibetan Plateau","authors":"Mengzhen Li, Yanmin Yang, Zhaoyu Peng, Gengnian Liu","doi":"10.5194/tc-18-1-2024","DOIUrl":null,"url":null,"abstract":"Abstract. Rock glaciers are important hydrological reserves in arid and semi-arid regions. Their activity states can indicate the existence of permafrost. To help further explore the development mechanisms of rock glaciers in semi-arid and humid transition regions, this paper provides a detailed rock glacier inventory of the Guokalariju (also known as Goikarla Rigyu) area of the Tibetan Plateau (TP) using a manual visual interpretation of Google Earth Pro remote sensing imagery. We also estimated the water volume equivalent (WVEQ) in the study area for the first time. Approximately 5057 rock glaciers were identified, covering a total area of ∼404.69 km2. Rock glaciers are unevenly distributed within the three sub-regions from west to east, with 80 % of them concentrated in the central region, where climatic and topographic conditions are most favorable. Under the same ground temperature conditions, increases in precipitation are conducive to rock glaciers forming at lower altitudes. Indeed, the lower limit of rock glaciers' mean altitude decreased eastward with increasing precipitation. Estimates of the water storage capacity of rock glaciers obtained by applying different methods varied considerably, but all showed the potential hydrological value of rock glaciers. The possible water storage in the subsurface ice of rock glacier permafrost was 1.32–3.60 km3. The ratio between the amount of subsurface ice stored in rock glaciers and surface ice stored in local glaciers falls within the range of 1:2.32 to 1:1.26, with an average ratio of 1:1.69. In the west region, where the climate is the driest, the water storage capacity of rock glaciers was estimated to be up to twice as large as that of the sub-region's glaciers. Changes in water resources and permafrost stability in the area where rock glaciers occur will have implications for regional water resource management, disaster prevention, and sustainable development strategies.\n","PeriodicalId":509217,"journal":{"name":"The Cryosphere","volume":"122 46","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Cryosphere","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/tc-18-1-2024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract. Rock glaciers are important hydrological reserves in arid and semi-arid regions. Their activity states can indicate the existence of permafrost. To help further explore the development mechanisms of rock glaciers in semi-arid and humid transition regions, this paper provides a detailed rock glacier inventory of the Guokalariju (also known as Goikarla Rigyu) area of the Tibetan Plateau (TP) using a manual visual interpretation of Google Earth Pro remote sensing imagery. We also estimated the water volume equivalent (WVEQ) in the study area for the first time. Approximately 5057 rock glaciers were identified, covering a total area of ∼404.69 km2. Rock glaciers are unevenly distributed within the three sub-regions from west to east, with 80 % of them concentrated in the central region, where climatic and topographic conditions are most favorable. Under the same ground temperature conditions, increases in precipitation are conducive to rock glaciers forming at lower altitudes. Indeed, the lower limit of rock glaciers' mean altitude decreased eastward with increasing precipitation. Estimates of the water storage capacity of rock glaciers obtained by applying different methods varied considerably, but all showed the potential hydrological value of rock glaciers. The possible water storage in the subsurface ice of rock glacier permafrost was 1.32–3.60 km3. The ratio between the amount of subsurface ice stored in rock glaciers and surface ice stored in local glaciers falls within the range of 1:2.32 to 1:1.26, with an average ratio of 1:1.69. In the west region, where the climate is the driest, the water storage capacity of rock glaciers was estimated to be up to twice as large as that of the sub-region's glaciers. Changes in water resources and permafrost stability in the area where rock glaciers occur will have implications for regional water resource management, disaster prevention, and sustainable development strategies.