Quantifying the intrinsic randomness in sequential measurements

Xinjian Liu, Yukun Wang, Yunguang Han, Xia Wu
{"title":"Quantifying the intrinsic randomness in sequential measurements","authors":"Xinjian Liu, Yukun Wang, Yunguang Han, Xia Wu","doi":"10.1088/1367-2630/ad19fe","DOIUrl":null,"url":null,"abstract":"\n In the standard Bell scenario, when making a local projective measurement on each system component, the amount of randomness generated is restricted. However, this limitation can be surpassed through the implementation of sequential measurements. Nonetheless, a rigorous definition of random numbers in the context of sequential measurements is yet to be established, except for the lower quantification in device-independent scenarios. In this paper, we provide the definition of quantum intrinsic randomness in sequential measurements and quantify the randomness in the Collins-Gisin-Linden-Massar-Popescu (CGLMP) inequality sequential scenario. Initially, we investigate the quantum intrinsic randomness of the mixed states under sequential projective measurements and the intrinsic randomness of the sequential non-projective measurements under pure states. Naturally, we rigorously define quantum intrinsic randomness under sequential non-projective measurement for arbitrary quantum states. Furthermore, we apply our method to one-Alice and two-Bobs sequential measurement scenarios and quantify the quantum intrinsic randomness of the maximally entangled state and maximally violated state by giving an extremal decomposition. Finally, using the sequential NPA hierarchy in the device-independent scenario, we derive lower bounds on the quantum intrinsic randomness of the maximally entangled state and maximally violated state.","PeriodicalId":508829,"journal":{"name":"New Journal of Physics","volume":"118 46","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Journal of Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1367-2630/ad19fe","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the standard Bell scenario, when making a local projective measurement on each system component, the amount of randomness generated is restricted. However, this limitation can be surpassed through the implementation of sequential measurements. Nonetheless, a rigorous definition of random numbers in the context of sequential measurements is yet to be established, except for the lower quantification in device-independent scenarios. In this paper, we provide the definition of quantum intrinsic randomness in sequential measurements and quantify the randomness in the Collins-Gisin-Linden-Massar-Popescu (CGLMP) inequality sequential scenario. Initially, we investigate the quantum intrinsic randomness of the mixed states under sequential projective measurements and the intrinsic randomness of the sequential non-projective measurements under pure states. Naturally, we rigorously define quantum intrinsic randomness under sequential non-projective measurement for arbitrary quantum states. Furthermore, we apply our method to one-Alice and two-Bobs sequential measurement scenarios and quantify the quantum intrinsic randomness of the maximally entangled state and maximally violated state by giving an extremal decomposition. Finally, using the sequential NPA hierarchy in the device-independent scenario, we derive lower bounds on the quantum intrinsic randomness of the maximally entangled state and maximally violated state.
量化连续测量的内在随机性
在标准的贝尔方案中,对每个系统组件进行局部投影测量时,产生的随机性是有限的。然而,通过实施顺序测量,这一限制可以被超越。然而,除了与设备无关的情况下的较低量化之外,序列测量背景下随机数的严格定义尚未确立。在本文中,我们给出了顺序测量中量子本征随机性的定义,并量化了柯林斯-吉辛-林登-马萨-波佩斯库(CGLMP)不等式顺序场景中的随机性。首先,我们研究了顺序投影测量下混合态的量子本征随机性和纯态下顺序非投影测量的本征随机性。自然,我们严格定义了任意量子态在顺序非投影测量下的量子本征随机性。此外,我们还将我们的方法应用于一爱丽丝和二博比斯顺序测量场景,并通过给出极值分解来量化最大纠缠态和最大违反态的量子本征随机性。最后,我们利用设备无关情景下的顺序 NPA 层次结构,推导出了最大纠缠态和最大违反态的量子本征随机性下限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信