Photocatalytic Removal of Metronidazole Antibiotics from Water Using Novel Ag-N-SnO2 Nanohybrid Material

Toxics Pub Date : 2024-01-02 DOI:10.3390/toxics12010036
Md. Shahriar Hossain Shuvo, Rupna Akther Putul, Khandker Saadat Hossain, S. Masum, Md. Ashraful Islam Molla
{"title":"Photocatalytic Removal of Metronidazole Antibiotics from Water Using Novel Ag-N-SnO2 Nanohybrid Material","authors":"Md. Shahriar Hossain Shuvo, Rupna Akther Putul, Khandker Saadat Hossain, S. Masum, Md. Ashraful Islam Molla","doi":"10.3390/toxics12010036","DOIUrl":null,"url":null,"abstract":"In this study, we employed a straightforward synthetic approach using the sol-gel method to fabricate a novel photocatalyst, Ag and N co-doped SnO2 (Ag-N-SnO2). The synthesized photocatalysts underwent characterization through various techniques including XRD, FTIR, FESEM-EDS, TEM, UV-vis DRS, BET, and XPS. The UV-vis DRS results confirmed a reduction in the bandgap energy of Ag-N-SnO2, leading to enhanced absorption of visible light. Additionally, TEM data demonstrated a smaller particle size for Ag-N-SnO2, and BET analysis revealed a significant increase in surface area compared to SnO2.The efficiency of the Ag-N-SnO2 photocatalyst in degrading metronidazole (MNZ) under natural sunlight surpassed that of SnO2. Under optimal conditions (Ag-N-SnO2 concentration of 0.4 g/L, MNZ concentration of 10 mg/L, pH 9, and 120 min of operation), the highest MNZ photocatalytic removal reached 97.03%. The reaction kinetics followed pseudo-first-order kinetics with a rate constant of 0.026 min−1. Investigation into the mineralization of MNZ indicated a substantial decrease in total organic carbon (TOC) values, reaching around 56% in 3 h of sunlight exposure. To elucidate the photocatalytic degradation mechanism of MNZ with Ag-N-SnO2, a scavenger test was employed which revealed the dominant role of •O2–. The results demonstrated the reusability of Ag-N-SnO2 for up to four cycles, highlighting its cost-effectiveness and environmental friendliness as a photocatalyst.","PeriodicalId":508978,"journal":{"name":"Toxics","volume":"28 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/toxics12010036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we employed a straightforward synthetic approach using the sol-gel method to fabricate a novel photocatalyst, Ag and N co-doped SnO2 (Ag-N-SnO2). The synthesized photocatalysts underwent characterization through various techniques including XRD, FTIR, FESEM-EDS, TEM, UV-vis DRS, BET, and XPS. The UV-vis DRS results confirmed a reduction in the bandgap energy of Ag-N-SnO2, leading to enhanced absorption of visible light. Additionally, TEM data demonstrated a smaller particle size for Ag-N-SnO2, and BET analysis revealed a significant increase in surface area compared to SnO2.The efficiency of the Ag-N-SnO2 photocatalyst in degrading metronidazole (MNZ) under natural sunlight surpassed that of SnO2. Under optimal conditions (Ag-N-SnO2 concentration of 0.4 g/L, MNZ concentration of 10 mg/L, pH 9, and 120 min of operation), the highest MNZ photocatalytic removal reached 97.03%. The reaction kinetics followed pseudo-first-order kinetics with a rate constant of 0.026 min−1. Investigation into the mineralization of MNZ indicated a substantial decrease in total organic carbon (TOC) values, reaching around 56% in 3 h of sunlight exposure. To elucidate the photocatalytic degradation mechanism of MNZ with Ag-N-SnO2, a scavenger test was employed which revealed the dominant role of •O2–. The results demonstrated the reusability of Ag-N-SnO2 for up to four cycles, highlighting its cost-effectiveness and environmental friendliness as a photocatalyst.
利用新型 Ag-N-SnO2 纳米杂化材料光催化去除水中的甲硝唑类抗生素
在本研究中,我们采用溶胶-凝胶法这种简单的合成方法制备了一种新型光催化剂--Ag 和 N 共掺杂 SnO2(Ag-N-SnO2)。合成的光催化剂通过各种技术进行了表征,包括 XRD、FTIR、FESEM-EDS、TEM、UV-vis DRS、BET 和 XPS。紫外-可见 DRS 结果表明,Ag-N-SnO2 的带隙能降低,从而增强了对可见光的吸收。此外,TEM 数据表明 Ag-N-SnO2 的粒径更小,BET 分析表明与 SnO2 相比,Ag-N-SnO2 的比表面积显著增加。Ag-N-SnO2 光催化剂在自然阳光下降解甲硝唑(MNZ)的效率超过了 SnO2。在最佳条件下(Ag-N-SnO2浓度为0.4 g/L,MNZ浓度为10 mg/L,pH值为9,运行120 min),MNZ的光催化去除率最高可达97.03%。反应动力学遵循伪一阶动力学,速率常数为 0.026 min-1。对 MNZ 矿化过程的研究表明,在阳光照射 3 小时后,总有机碳(TOC)值大幅下降了约 56%。为了阐明 Ag-N-SnO2 对 MNZ 的光催化降解机制,采用了清除剂测试,结果表明 -O2- 起主导作用。结果表明,Ag-N-SnO2 可重复使用长达四个周期,突出了其作为光催化剂的成本效益和环境友好性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信