Probabilistic end-to-end irradiance forecasting through pre-trained deep learning models using all-sky-images

Q2 Earth and Planetary Sciences
Samer Chaaraoui, Sebastian Houben, Stefanie Meilinger
{"title":"Probabilistic end-to-end irradiance forecasting through pre-trained deep learning models using all-sky-images","authors":"Samer Chaaraoui, Sebastian Houben, Stefanie Meilinger","doi":"10.5194/asr-20-129-2024","DOIUrl":null,"url":null,"abstract":"Abstract. This work proposes a novel approach for probabilistic end-to-end all-sky imager-based nowcasting with horizons of up to 30 min using an ImageNet pre-trained deep neural network. The method involves a two-stage approach. First, a backbone model is trained to estimate the irradiance from all-sky imager (ASI) images. The model is then extended and retrained on image and parameter sequences for forecasting. An open access data set is used for training and evaluation. We investigated the impact of simultaneously considering global horizontal (GHI), direct normal (DNI), and diffuse horizontal irradiance (DHI) on training time and forecast performance as well as the effect of adding parameters describing the irradiance variability proposed in the literature. The backbone model estimates current GHI with an RMSE and MAE of 58.06 and 29.33 W m−2, respectively. When extended for forecasting, the model achieves an overall positive skill score reaching 18.6 % compared to a smart persistence forecast. Minor modifications to the deterministic backbone and forecasting models enables the architecture to output an asymmetrical probability distribution and reduces training time while leading to similar errors for the backbone models. Investigating the impact of variability parameters shows that they reduce training time but have no significant impact on the GHI forecasting performance for both deterministic and probabilistic forecasting while simultaneously forecasting GHI, DNI, and DHI reduces the forecast performance.\n","PeriodicalId":30081,"journal":{"name":"Advances in Science and Research","volume":"53 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Science and Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/asr-20-129-2024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract. This work proposes a novel approach for probabilistic end-to-end all-sky imager-based nowcasting with horizons of up to 30 min using an ImageNet pre-trained deep neural network. The method involves a two-stage approach. First, a backbone model is trained to estimate the irradiance from all-sky imager (ASI) images. The model is then extended and retrained on image and parameter sequences for forecasting. An open access data set is used for training and evaluation. We investigated the impact of simultaneously considering global horizontal (GHI), direct normal (DNI), and diffuse horizontal irradiance (DHI) on training time and forecast performance as well as the effect of adding parameters describing the irradiance variability proposed in the literature. The backbone model estimates current GHI with an RMSE and MAE of 58.06 and 29.33 W m−2, respectively. When extended for forecasting, the model achieves an overall positive skill score reaching 18.6 % compared to a smart persistence forecast. Minor modifications to the deterministic backbone and forecasting models enables the architecture to output an asymmetrical probability distribution and reduces training time while leading to similar errors for the backbone models. Investigating the impact of variability parameters shows that they reduce training time but have no significant impact on the GHI forecasting performance for both deterministic and probabilistic forecasting while simultaneously forecasting GHI, DNI, and DHI reduces the forecast performance.
通过使用全天空图像的预训练深度学习模型进行端到端辐照度概率预测
摘要这项工作提出了一种新方法,利用 ImageNet 预训练的深度神经网络进行基于全天空成像仪的概率端到端预报,预报视角可达 30 分钟。该方法包括两个阶段。首先,训练一个骨干模型,以估计来自全天空成像仪(ASI)图像的辐照度。然后在图像和参数序列上对模型进行扩展和再训练,以进行预测。训练和评估使用的是一个开放数据集。我们研究了同时考虑全球水平辐照度(GHI)、直接法线辐照度(DNI)和漫反射水平辐照度(DHI)对训练时间和预报性能的影响,以及添加文献中提出的辐照度变化参数的效果。骨干模型估算的当前 GHI 的均方根误差和最大均方根误差分别为 58.06 W m-2 和 29.33 W m-2。当扩展到预报时,与智能持续预报相比,该模式的总体技能得分达到了 18.6%。对确定性骨干模型和预测模型稍作修改后,该架构就能输出非对称概率分布,并减少了训练时间,同时导致骨干模型出现类似误差。对变量参数影响的研究表明,这些参数减少了训练时间,但对确定性和概率性预测的 GHI 预测性能没有显著影响,而同时预测 GHI、DNI 和 DHI 则降低了预测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Science and Research
Advances in Science and Research Earth and Planetary Sciences-Geophysics
CiteScore
4.10
自引率
0.00%
发文量
13
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信