Uniform Anderson Localization and Non-local Minami-type Estimates in Limit-periodic Media

IF 0.4 4区 数学 Q4 STATISTICS & PROBABILITY
V. Chulaevsky, Y. Suhov
{"title":"Uniform Anderson Localization and Non-local Minami-type Estimates in Limit-periodic Media","authors":"V. Chulaevsky, Y. Suhov","doi":"10.61102/1024-2953-mprf.2023.29.4.004","DOIUrl":null,"url":null,"abstract":"We prove a uniform exponential localization of eigenfunctions and simplicity of spectrum for a class of limit-periodic lattice Schr¨odinger operators. An important ingredient of the proof is a generalized variant of the well-known Minami estimates (correlation inequalities for the eigenvalues) to the case where the spectral intervals can be arbitrarily placed in the real line. The new corre- lation inequalities allow us to substantially simplify and make more transparent the application of the KAM (Kolmogorov-Arnold-Moser) techniques.","PeriodicalId":48890,"journal":{"name":"Markov Processes and Related Fields","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Markov Processes and Related Fields","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.61102/1024-2953-mprf.2023.29.4.004","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

We prove a uniform exponential localization of eigenfunctions and simplicity of spectrum for a class of limit-periodic lattice Schr¨odinger operators. An important ingredient of the proof is a generalized variant of the well-known Minami estimates (correlation inequalities for the eigenvalues) to the case where the spectral intervals can be arbitrarily placed in the real line. The new corre- lation inequalities allow us to substantially simplify and make more transparent the application of the KAM (Kolmogorov-Arnold-Moser) techniques.
极限周期介质中的均匀安德森定位和非局部迷你型估算
我们证明了一类极限周期晶格施罗丁格算子的特征函数均匀指数定位和谱的简单性。证明的一个重要成分是著名的南估计(特征值的相关不等式)的广义变体,它适用于谱区间可以任意置于实线上的情况。新的相关不等式使我们能够大幅简化 KAM(Kolmogorov-Arnold-Moser)技术的应用,并使其更加透明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Markov Processes and Related Fields
Markov Processes and Related Fields STATISTICS & PROBABILITY-
CiteScore
0.70
自引率
0.00%
发文量
0
期刊介绍: Markov Processes And Related Fields The Journal focuses on mathematical modelling of today''s enormous wealth of problems from modern technology, like artificial intelligence, large scale networks, data bases, parallel simulation, computer architectures, etc. Research papers, reviews, tutorial papers and additionally short explanations of new applied fields and new mathematical problems in the above fields are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信