KAM theorem for degenerate infinite-dimensional reversible systems

Pub Date : 2024-01-03 DOI:10.58997/ejde.2024.02
Zhaowei Lou, Youchao Wu
{"title":"KAM theorem for degenerate infinite-dimensional reversible systems","authors":"Zhaowei Lou, Youchao Wu","doi":"10.58997/ejde.2024.02","DOIUrl":null,"url":null,"abstract":"In this article, we establish a Kolmogorov-Arnold-Moser (KAM) theorem for degenerate infinite-dimensional reversible systems under a non-degenerate condition of Russmann type. This theorem broadens the scope of applicability of degenerate KAM theory, previously confined to Hamiltonian systems, by incorporating infinite-dimensional reversible systems. Using this theorem, we obtain the existence and linear stability of quasi-periodic solutions for a class of non-Hamiltonian but reversible beam equations with non-linearities in derivatives.\nFor more information see https://ejde.math.txstate.edu/Volumes/2024/02/abstr.html","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.58997/ejde.2024.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we establish a Kolmogorov-Arnold-Moser (KAM) theorem for degenerate infinite-dimensional reversible systems under a non-degenerate condition of Russmann type. This theorem broadens the scope of applicability of degenerate KAM theory, previously confined to Hamiltonian systems, by incorporating infinite-dimensional reversible systems. Using this theorem, we obtain the existence and linear stability of quasi-periodic solutions for a class of non-Hamiltonian but reversible beam equations with non-linearities in derivatives. For more information see https://ejde.math.txstate.edu/Volumes/2024/02/abstr.html
分享
查看原文
退化无限维可逆系统的 KAM 定理
在这篇文章中,我们在鲁斯曼类型的非退化条件下,建立了退化无限维可逆系统的科尔莫戈罗夫-阿诺德-莫泽尔(KAM)定理。该定理拓宽了退化 KAM 理论的适用范围,将无限维可逆系统纳入其中,而该理论以前仅限于哈密尔顿系统。利用该定理,我们得到了一类非哈密尔顿但可逆的、导数非线性的梁方程的准周期解的存在性和线性稳定性。更多信息,请参见 https://ejde.math.txstate.edu/Volumes/2024/02/abstr.html。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信