Signal Processing in the Retina: Interpretable Graph Classifier to Predict Ganglion Cell Responses

IF 2.9 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Yasaman Parhizkar;Gene Cheung;Andrew W. Eckford
{"title":"Signal Processing in the Retina: Interpretable Graph Classifier to Predict Ganglion Cell Responses","authors":"Yasaman Parhizkar;Gene Cheung;Andrew W. Eckford","doi":"10.1109/OJSP.2023.3349111","DOIUrl":null,"url":null,"abstract":"It is a popular hypothesis in neuroscience that ganglion cells in the retina are activated by selectively detecting visual features in an observed scene. While ganglion cell firings can be predicted via data-trained deep neural nets, the networks remain indecipherable, thus providing little understanding of the cells' underlying operations. To extract knowledge from the cell firings, in this paper we learn an interpretable graph-based classifier from data to predict the firings of ganglion cells in response to visual stimuli. Specifically, we learn a positive semi-definite (PSD) metric matrix \n<inline-formula><tex-math>${\\mathbf {M}}\\succeq 0$</tex-math></inline-formula>\n that defines Mahalanobis distances between graph nodes (visual events) endowed with pre-computed feature vectors; the computed inter-node distances lead to edge weights and a combinatorial graph that is amenable to binary classification. Mathematically, we define the objective of metric matrix \n<inline-formula><tex-math>${\\mathbf {M}}$</tex-math></inline-formula>\n optimization using a graph adaptation of large margin nearest neighbor (LMNN), which is rewritten as a semi-definite programming (SDP) problem. We solve it efficiently via a fast approximation called Gershgorin disc perfect alignment (GDPA) linearization. The learned metric matrix \n<inline-formula><tex-math>${\\mathbf {M}}$</tex-math></inline-formula>\n provides interpretability: important features are identified along \n<inline-formula><tex-math>${\\mathbf {M}}$</tex-math></inline-formula>\n’s diagonal, and their mutual relationships are inferred from off-diagonal terms. Our fast metric learning framework can be applied to other biological systems with pre-chosen features that require interpretation.","PeriodicalId":73300,"journal":{"name":"IEEE open journal of signal processing","volume":"5 ","pages":"303-311"},"PeriodicalIF":2.9000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10379097","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of signal processing","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10379097/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

It is a popular hypothesis in neuroscience that ganglion cells in the retina are activated by selectively detecting visual features in an observed scene. While ganglion cell firings can be predicted via data-trained deep neural nets, the networks remain indecipherable, thus providing little understanding of the cells' underlying operations. To extract knowledge from the cell firings, in this paper we learn an interpretable graph-based classifier from data to predict the firings of ganglion cells in response to visual stimuli. Specifically, we learn a positive semi-definite (PSD) metric matrix ${\mathbf {M}}\succeq 0$ that defines Mahalanobis distances between graph nodes (visual events) endowed with pre-computed feature vectors; the computed inter-node distances lead to edge weights and a combinatorial graph that is amenable to binary classification. Mathematically, we define the objective of metric matrix ${\mathbf {M}}$ optimization using a graph adaptation of large margin nearest neighbor (LMNN), which is rewritten as a semi-definite programming (SDP) problem. We solve it efficiently via a fast approximation called Gershgorin disc perfect alignment (GDPA) linearization. The learned metric matrix ${\mathbf {M}}$ provides interpretability: important features are identified along ${\mathbf {M}}$ ’s diagonal, and their mutual relationships are inferred from off-diagonal terms. Our fast metric learning framework can be applied to other biological systems with pre-chosen features that require interpretation.
视网膜中的信号处理:预测神经节细胞反应的可解释图形分类器
神经科学中流行的一种假说认为,视网膜上的神经节细胞是通过选择性地检测观察到的场景中的视觉特征而被激活的。虽然神经节细胞的搏动可以通过数据训练的深度神经网络进行预测,但这些网络仍然难以解读,因此对细胞的底层运作知之甚少。为了从细胞搏动中提取知识,我们在本文中从数据中学习了一种基于图的可解释分类器,以预测神经节细胞在视觉刺激下的搏动。具体来说,我们学习一个正半有穷(PSD)度量矩阵 $\mathbf{M}\succeq 0$ 定义了图节点(视觉事件)之间的马哈拉诺比距离,并预先计算了特征向量;计算出的节点间距离产生了边缘权重和组合图,可用于二元分类。在数学上,我们定义了度量矩阵$\mathbf{M}$优化的目标,使用了大边际近邻(LMNN)的图适应性,并将其改写为半有限编程(SDP)问题。我们通过一种称为格什高林圆盘完美配准(GDPA)线性化的快速近似方法高效地解决了这一问题。学习到的度量矩阵 $\mathbf{M}$ 提供了可解释性:重要特征沿着 $\mathbf{M}$ 的对角线被识别出来,它们之间的相互关系可以从对角线外的项中推断出来。我们的快速度量学习框架可应用于其他具有需要解释的预选特征的生物系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.30
自引率
0.00%
发文量
0
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信