Mechanical response of an energy pile beneath a liquefied natural gas tank subjected to separated and coupled thermo-mechanical loads: full-scale tests

Guangzhe Zhang, Fenglei Du, Xiaohui Cheng, Xiangyu Li, Anqi Mao, Benyi Cao
{"title":"Mechanical response of an energy pile beneath a liquefied natural gas tank subjected to separated and coupled thermo-mechanical loads: full-scale tests","authors":"Guangzhe Zhang, Fenglei Du, Xiaohui Cheng, Xiangyu Li, Anqi Mao, Benyi Cao","doi":"10.1680/jgeen.22.00206","DOIUrl":null,"url":null,"abstract":"In this paper, four individual full-scale tests were carried out to study the mechanical response of a cast-in-place energy pile beneath a liquefied natural gas (LNG) tank subjected to separated and coupled thermo-mechanical loads. The results show that the temperature profiles displayed a comparable trend in response to pile heating, cooling and recovery. Specifically, the temperature at the mid-depth of the pile fluctuated rapidly, while the changes at both ends were relatively slower. During the thermal stages, when the pile had the flexibility to expand or contract, the observed strain at the pile head significantly deviated from the free thermal strain. In contrast, the strain at the pile toe was relatively aligned with the free thermal strain. The thermally induced stress obtained at the end of the coupled loading-cooling stage was found to exceed the tensile strength of the C40 reinforced concrete. However, under the actual testing conditions, both the settlement and the bearing capacity of the pile remained well within the required values, ensuring the structure of the LNG tank will not be damaged. Highlights • Four individual tests of an energy pile beneath a liquefied natural gas tank were designed. • Heat transfer and temperature distribution were analyzed. • Temperature-related strains and thermally induced stress were determined. • Settlement and bearing capacity of energy pile were estimated.","PeriodicalId":509438,"journal":{"name":"Proceedings of the Institution of Civil Engineers - Geotechnical Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Civil Engineers - Geotechnical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1680/jgeen.22.00206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, four individual full-scale tests were carried out to study the mechanical response of a cast-in-place energy pile beneath a liquefied natural gas (LNG) tank subjected to separated and coupled thermo-mechanical loads. The results show that the temperature profiles displayed a comparable trend in response to pile heating, cooling and recovery. Specifically, the temperature at the mid-depth of the pile fluctuated rapidly, while the changes at both ends were relatively slower. During the thermal stages, when the pile had the flexibility to expand or contract, the observed strain at the pile head significantly deviated from the free thermal strain. In contrast, the strain at the pile toe was relatively aligned with the free thermal strain. The thermally induced stress obtained at the end of the coupled loading-cooling stage was found to exceed the tensile strength of the C40 reinforced concrete. However, under the actual testing conditions, both the settlement and the bearing capacity of the pile remained well within the required values, ensuring the structure of the LNG tank will not be damaged. Highlights • Four individual tests of an energy pile beneath a liquefied natural gas tank were designed. • Heat transfer and temperature distribution were analyzed. • Temperature-related strains and thermally induced stress were determined. • Settlement and bearing capacity of energy pile were estimated.
液化天然气储罐下的能量桩在分离和耦合热机械载荷作用下的机械响应:全尺寸试验
本文进行了四次单独的全尺寸试验,研究液化天然气(LNG)储罐下方的现浇能源桩在单独和耦合热机械载荷作用下的机械响应。结果表明,温度曲线在桩的加热、冷却和恢复过程中呈现出相似的趋势。具体来说,桩中间深度的温度波动较快,而两端的温度变化相对较慢。在热阶段,当桩具有膨胀或收缩的灵活性时,在桩头观测到的应变明显偏离自由热应变。相反,桩头的应变与自由热应变相对一致。在加载-冷却耦合阶段结束时获得的热应力超过了 C40 钢筋混凝土的抗拉强度。然而,在实际测试条件下,桩的沉降和承载能力都保持在要求值范围内,确保了液化天然气储罐的结构不会受到损坏。亮点 - 设计了液化天然气储罐下方能量桩的四次单独试验。- 对传热和温度分布进行了分析。- 确定了与温度相关的应变和热应力。- 估算了能源桩的沉降和承载能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信