Stability and rate of decay for solutions to stochastic differential equations with Markov switching

Pub Date : 2024-01-03 DOI:10.58997/ejde.2024.01
Shuaishuai Lu, Xue Yang
{"title":"Stability and rate of decay for solutions to stochastic differential equations with Markov switching","authors":"Shuaishuai Lu, Xue Yang","doi":"10.58997/ejde.2024.01","DOIUrl":null,"url":null,"abstract":"In this article, we present the almost sure asymptotic stability and a general rate of decay for solutions to stochastic differential equations (SDEs) with Markov switching. By establishing a suitable Lyapunov function and using an exponential Martingale inequality and the Borel-Cantelli theorem, we give sufficient conditions for the asymptotic stability. Also, we obtain sufficient conditions for the construction of two kinds of Lyapunov functions. Finally give two examples to illustrate the validity of our results.\nFor more information see https://ejde.math.txstate.edu/Volumes/2024/01/abstr.html","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.58997/ejde.2024.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this article, we present the almost sure asymptotic stability and a general rate of decay for solutions to stochastic differential equations (SDEs) with Markov switching. By establishing a suitable Lyapunov function and using an exponential Martingale inequality and the Borel-Cantelli theorem, we give sufficient conditions for the asymptotic stability. Also, we obtain sufficient conditions for the construction of two kinds of Lyapunov functions. Finally give two examples to illustrate the validity of our results. For more information see https://ejde.math.txstate.edu/Volumes/2024/01/abstr.html
分享
查看原文
带有马尔可夫开关的随机微分方程解的稳定性和衰减率
在本文中,我们提出了具有马尔可夫开关的随机微分方程(SDE)解的几乎确定的渐近稳定性和一般衰减率。通过建立合适的 Lyapunov 函数,并利用指数马丁格尔不等式和 Borel-Cantelli 定理,我们给出了渐近稳定性的充分条件。此外,我们还获得了构建两种李亚普诺夫函数的充分条件。最后给出两个例子来说明我们结果的有效性。更多信息,请参见 https://ejde.math.txstate.edu/Volumes/2024/01/abstr.html。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信