Experimental and numerical study on micro-milling of CoCrW alloy produced by selective laser melting and casting

IF 1.9 3区 工程技术 Q3 ENGINEERING, MANUFACTURING
Mehmet Akif Oymak, Erkan Bahçe, İbrahim Gezer
{"title":"Experimental and numerical study on micro-milling of CoCrW alloy produced by selective laser melting and casting","authors":"Mehmet Akif Oymak, Erkan Bahçe, İbrahim Gezer","doi":"10.1177/09544054231215107","DOIUrl":null,"url":null,"abstract":"CoCrW can be produced using Additive Manufacturing (AM), while casting methods are commonly used for applications such as dental prostheses. However, rapid heating and cooling during AM production can lead to internal defects, micro-cracks, and shrinkage. Micro-milling can help enhance the material’s structure and impart micro-scale properties. This study aimed to investigate the micro-milling properties of CoCrW products manufactured using AM and compare them with materials produced by casting. Numerical models and experimental studies were conducted to examine the differences. Results showed that CoCr alloys produced with AM exhibited 25%–30% lower burr formations, while CoCrW produced by casting had 2%–5% lower surface roughness. Micro-milling experiments demonstrated that a feed rate of 2.5 μm/tooth resulted in 35%–40% more burr formation and surface roughness compared to a feed rate of 5 µm/tooth in both SLM and casting methods, attributed to the cutting edge radius. The cutting temperature and top burr height were analyzed using finite element simulations and experimental methods. It was observed that the maximum temperature in CoCrW produced by casting was 6%–15% higher than that in the SLM method. The finite element analyses and experiments revealed a difference of 4%–7% in maximum temperatures and top burr height.","PeriodicalId":20663,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture","volume":"16 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544054231215107","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

CoCrW can be produced using Additive Manufacturing (AM), while casting methods are commonly used for applications such as dental prostheses. However, rapid heating and cooling during AM production can lead to internal defects, micro-cracks, and shrinkage. Micro-milling can help enhance the material’s structure and impart micro-scale properties. This study aimed to investigate the micro-milling properties of CoCrW products manufactured using AM and compare them with materials produced by casting. Numerical models and experimental studies were conducted to examine the differences. Results showed that CoCr alloys produced with AM exhibited 25%–30% lower burr formations, while CoCrW produced by casting had 2%–5% lower surface roughness. Micro-milling experiments demonstrated that a feed rate of 2.5 μm/tooth resulted in 35%–40% more burr formation and surface roughness compared to a feed rate of 5 µm/tooth in both SLM and casting methods, attributed to the cutting edge radius. The cutting temperature and top burr height were analyzed using finite element simulations and experimental methods. It was observed that the maximum temperature in CoCrW produced by casting was 6%–15% higher than that in the SLM method. The finite element analyses and experiments revealed a difference of 4%–7% in maximum temperatures and top burr height.
选择性激光熔化和铸造法生产 CoCrW 合金微铣削的实验和数值研究
钴铬钼钢可以使用快速成型(AM)技术生产,而铸造方法通常用于牙科假体等应用。然而,快速成型生产过程中的快速加热和冷却会导致内部缺陷、微裂纹和收缩。微铣削有助于增强材料的结构并赋予微尺度特性。本研究旨在调查使用 AM 生产的 CoCrW 产品的微铣特性,并将其与通过铸造生产的材料进行比较。研究人员通过数值模型和实验研究来检验两者之间的差异。结果表明,使用 AM 生产的 CoCr 合金毛刺形成率低 25%-30%,而使用铸造生产的 CoCrW 表面粗糙度低 2%-5%。微铣削实验表明,与 SLM 和铸造方法中 5 µm/tooth 的进给量相比,2.5 μm/tooth 的进给量导致毛刺形成和表面粗糙度增加 35%-40%,这归因于切削刃半径。使用有限元模拟和实验方法分析了切削温度和顶部毛刺高度。结果表明,铸造法生产的 CoCrW 的最高温度比 SLM 法高 6%-15%。有限元分析和实验显示,最高温度和毛刺顶端高度相差 4%-7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.10
自引率
30.80%
发文量
167
审稿时长
5.1 months
期刊介绍: Manufacturing industries throughout the world are changing very rapidly. New concepts and methods are being developed and exploited to enable efficient and effective manufacturing. Existing manufacturing processes are being improved to meet the requirements of lean and agile manufacturing. The aim of the Journal of Engineering Manufacture is to provide a focus for these developments in engineering manufacture by publishing original papers and review papers covering technological and scientific research, developments and management implementation in manufacturing. This journal is also peer reviewed. Contributions are welcomed in the broad areas of manufacturing processes, manufacturing technology and factory automation, digital manufacturing, design and manufacturing systems including management relevant to engineering manufacture. Of particular interest at the present time would be papers concerned with digital manufacturing, metrology enabled manufacturing, smart factory, additive manufacturing and composites as well as specialist manufacturing fields like nanotechnology, sustainable & clean manufacturing and bio-manufacturing. Articles may be Research Papers, Reviews, Technical Notes, or Short Communications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信