Structuring Interdigitated Back Contact Solar Cells Using the Enhanced Oxidation Characteristics Under Laser‐Doped Back Surface Field Regions

Vaibhav V. Kuruganti, Olindo Isabella, Valentin D. Mihailetchi
{"title":"Structuring Interdigitated Back Contact Solar Cells Using the Enhanced Oxidation Characteristics Under Laser‐Doped Back Surface Field Regions","authors":"Vaibhav V. Kuruganti, Olindo Isabella, Valentin D. Mihailetchi","doi":"10.1002/pssa.202300820","DOIUrl":null,"url":null,"abstract":"Interdigitated back contact (IBC) architecture can yield among the highest silicon wafer‐based solar cell conversion efficiencies. Since both polarities are realized on the rear side, there is a definite need for a patterning step. Some of the common patterning techniques involve photolithography, inkjet patterning, and laser ablation. This work introduces a novel patterning technique for structuring the rear side of IBC solar cells using the enhanced oxidation characteristics under the locally laser‐doped n++ back surface field (BSF) regions with high‐phosphorous surface concentrations. Phosphosilicate glass layers deposited via POCl3 diffusion serve as a precursor layer for the formation of local heavily laser‐doped n++ BSF regions. The laser‐doped n++ BSF regions exhibit a 2.6‐fold increase in oxide thickness compared to the nonlaser‐doped n+ BSF regions after undergoing high‐temperature wet thermal oxidation. The utilization of oxide thickness selectivity under laser‐doped and nonlaser‐doped regions serves two purposes in the context of the IBC solar cell, first patterning rear side and second acting as a masking layer for the subsequent boron diffusion. Proof‐of‐concept solar cells are fabricated using this novel patterning technique with a mean conversion efficiency of 20.41%.","PeriodicalId":506741,"journal":{"name":"physica status solidi (a)","volume":"56 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"physica status solidi (a)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/pssa.202300820","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Interdigitated back contact (IBC) architecture can yield among the highest silicon wafer‐based solar cell conversion efficiencies. Since both polarities are realized on the rear side, there is a definite need for a patterning step. Some of the common patterning techniques involve photolithography, inkjet patterning, and laser ablation. This work introduces a novel patterning technique for structuring the rear side of IBC solar cells using the enhanced oxidation characteristics under the locally laser‐doped n++ back surface field (BSF) regions with high‐phosphorous surface concentrations. Phosphosilicate glass layers deposited via POCl3 diffusion serve as a precursor layer for the formation of local heavily laser‐doped n++ BSF regions. The laser‐doped n++ BSF regions exhibit a 2.6‐fold increase in oxide thickness compared to the nonlaser‐doped n+ BSF regions after undergoing high‐temperature wet thermal oxidation. The utilization of oxide thickness selectivity under laser‐doped and nonlaser‐doped regions serves two purposes in the context of the IBC solar cell, first patterning rear side and second acting as a masking layer for the subsequent boron diffusion. Proof‐of‐concept solar cells are fabricated using this novel patterning technique with a mean conversion efficiency of 20.41%.

Abstract Image

利用激光掺杂背表面场区下的增强氧化特性构建互嵌背接触太阳能电池
互嵌式背触点(IBC)结构可以产生最高的硅晶片太阳能电池转换效率。由于两个极性都是在背面实现的,因此肯定需要一个图案化步骤。一些常见的图案化技术包括光刻、喷墨图案化和激光烧蚀。这项工作介绍了一种新颖的图案化技术,利用局部激光掺杂高磷表面浓度的 n++ 背表面场 (BSF) 区域下的增强氧化特性来构造 IBC 太阳能电池的背面。通过 POCl3 扩散沉积的磷硅酸盐玻璃层是形成局部重激光掺杂 n++ BSF 区域的前驱层。经过高温湿热氧化后,激光掺杂的 n++ BSF 区域的氧化物厚度比非激光掺杂的 n+ BSF 区域增加了 2.6 倍。在 IBC 太阳能电池中,利用激光掺杂和非激光掺杂区域下的氧化物厚度选择性有两个目的,首先是对背面进行图案化,其次是为随后的硼扩散充当掩蔽层。利用这种新颖的图案化技术制造出了概念验证太阳能电池,其平均转换效率为 20.41%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信