Joint Regression Analysis of Multiple Traits Based on Genetic Relationships

Ann-Sophie Buchardt, Xiang Zhou, Claus Thorn Ekstrøm
{"title":"Joint Regression Analysis of Multiple Traits Based on Genetic Relationships","authors":"Ann-Sophie Buchardt, Xiang Zhou, Claus Thorn Ekstrøm","doi":"10.1093/bioadv/vbad192","DOIUrl":null,"url":null,"abstract":"\n Polygenic scores (PGSs) are widely available and employed in genomic data analyses for predicting and understanding genetic architectures. We propose a novel clustering and estimation method using PGSs for inferring a genetic relationship among multiple, simultaneously measured and potentially correlated traits in a multivariate GWAS.\n Using graphical lasso, we estimate a sparse covariance matrix of the PGSs and obtain clusters of traits sharing genetic characteristics. We use the clusters to specify the structure of the error covariance matrix of a generalised least squares (GLS) model and use the feasible GLS estimator for estimating a linear regression model with a certain unknown degree of correlation between the residuals.\n The method suits many biology studies well with traits embedded in some genetic functioning groups and facilitates developement of the PGS research. We compare the method with fully parametric techniques on simulated data and illustrate the utility of the methods by examining a heterogeneous stock mouse data set from the Wellcome Trust Centre for Human Genetics. We demonstrate that the method successfully identifies clusters of traits and increases precision, power and computational efficiency.","PeriodicalId":505477,"journal":{"name":"Bioinformatics Advances","volume":"45 19","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics Advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbad192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Polygenic scores (PGSs) are widely available and employed in genomic data analyses for predicting and understanding genetic architectures. We propose a novel clustering and estimation method using PGSs for inferring a genetic relationship among multiple, simultaneously measured and potentially correlated traits in a multivariate GWAS. Using graphical lasso, we estimate a sparse covariance matrix of the PGSs and obtain clusters of traits sharing genetic characteristics. We use the clusters to specify the structure of the error covariance matrix of a generalised least squares (GLS) model and use the feasible GLS estimator for estimating a linear regression model with a certain unknown degree of correlation between the residuals. The method suits many biology studies well with traits embedded in some genetic functioning groups and facilitates developement of the PGS research. We compare the method with fully parametric techniques on simulated data and illustrate the utility of the methods by examining a heterogeneous stock mouse data set from the Wellcome Trust Centre for Human Genetics. We demonstrate that the method successfully identifies clusters of traits and increases precision, power and computational efficiency.
基于遗传关系的多性状联合回归分析
多基因评分(PGS)在基因组数据分析中被广泛使用,用于预测和理解基因结构。我们提出了一种新颖的聚类和估算方法,利用多基因分数推断多元 GWAS 中多个同时测量且可能相关的性状之间的遗传关系。我们利用图形套索估计 PGSs 的稀疏协方差矩阵,并获得具有共同遗传特征的性状聚类。我们利用这些簇来指定广义最小二乘(GLS)模型误差协方差矩阵的结构,并使用可行的 GLS 估计器来估计残差之间存在一定未知相关度的线性回归模型。该方法非常适合许多生物学研究,其性状包含在一些遗传功能组中,并促进了 PGS 研究的发展。我们在模拟数据上将该方法与完全参数技术进行了比较,并通过研究威康信托基金会人类遗传学中心的异质种鼠数据集说明了该方法的实用性。我们证明,该方法成功地识别了性状群,并提高了精度、功率和计算效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信