P. Sitompul, P. Razi, T. Manik, M. Batubara, M. Lathif, Farahhati Mumtahana, R. Suryana, Ibnu Nurul Huda, Taufiq Hidayat, Yana Taryana, F. Sobirin
{"title":"A Study for a Radio Telescope in Indonesia: Parabolic Design, Simulation of a Horn Antenna, and Radio Frequency Survey in Frequency of 0.045–18 GHz","authors":"P. Sitompul, P. Razi, T. Manik, M. Batubara, M. Lathif, Farahhati Mumtahana, R. Suryana, Ibnu Nurul Huda, Taufiq Hidayat, Yana Taryana, F. Sobirin","doi":"10.3390/aerospace11010052","DOIUrl":null,"url":null,"abstract":"After years of preparation, the Indonesia National Observatory, located in Mount Timau, Kupang Regency, is currently in the completion stage of research in astronomy and astrophysics and related subjects. An optic telescope with a 3.8 m diameter is expected to receive its first light in mid-2024. A feasibility study for Indonesia’s radio telescopes and networks is in progress. A single-dish parabolic radio antenna with a diameter of 20 m is proposed to work in a frequency range of 1–50 GHz. An array dipole antenna with an area of 100 m × 100 m will also be installed at a 70–350 MHz frequency. A feasibility study about system design is in progress, and a radio frequency interference (RFI) survey has been underway since 2014. In this paper, we described the design of radio telescopes such as parabolic reflectors, horn antenna, and the radio frequency interference (RFI) in the surrounding area of the National Observatory, covering the frequency band from 45 MHz to 18 GHz. The frequencies in 45–85 MHz and 120–360 MHz intervals are still relatively quiet and suitable for developing radio telescopes. The selected higher frequency of 1.4 GHz for a neutral hydrogen (HI) spectral line, 6.6 GHz for a methanol (CH3OH) spectral line, and 8.6 GHz for a helium (3 He+) spectral line is still relatively quiet and suitable for the development of radio telescopes.","PeriodicalId":48525,"journal":{"name":"Aerospace","volume":"16 6","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/aerospace11010052","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
After years of preparation, the Indonesia National Observatory, located in Mount Timau, Kupang Regency, is currently in the completion stage of research in astronomy and astrophysics and related subjects. An optic telescope with a 3.8 m diameter is expected to receive its first light in mid-2024. A feasibility study for Indonesia’s radio telescopes and networks is in progress. A single-dish parabolic radio antenna with a diameter of 20 m is proposed to work in a frequency range of 1–50 GHz. An array dipole antenna with an area of 100 m × 100 m will also be installed at a 70–350 MHz frequency. A feasibility study about system design is in progress, and a radio frequency interference (RFI) survey has been underway since 2014. In this paper, we described the design of radio telescopes such as parabolic reflectors, horn antenna, and the radio frequency interference (RFI) in the surrounding area of the National Observatory, covering the frequency band from 45 MHz to 18 GHz. The frequencies in 45–85 MHz and 120–360 MHz intervals are still relatively quiet and suitable for developing radio telescopes. The selected higher frequency of 1.4 GHz for a neutral hydrogen (HI) spectral line, 6.6 GHz for a methanol (CH3OH) spectral line, and 8.6 GHz for a helium (3 He+) spectral line is still relatively quiet and suitable for the development of radio telescopes.
期刊介绍:
Aerospace is a multidisciplinary science inviting submissions on, but not limited to, the following subject areas: aerodynamics computational fluid dynamics fluid-structure interaction flight mechanics plasmas research instrumentation test facilities environment material science structural analysis thermophysics and heat transfer thermal-structure interaction aeroacoustics optics electromagnetism and radar propulsion power generation and conversion fuels and propellants combustion multidisciplinary design optimization software engineering data analysis signal and image processing artificial intelligence aerospace vehicles'' operation, control and maintenance risk and reliability human factors human-automation interaction airline operations and management air traffic management airport design meteorology space exploration multi-physics interaction.