Shuning Wang, Yanlin He, Hangwei Zhu, Haoxuan Wang
{"title":"An Efficient Design Method for a Metasurface Polarizer with High Transmittance and Extinction Ratio","authors":"Shuning Wang, Yanlin He, Hangwei Zhu, Haoxuan Wang","doi":"10.3390/photonics11010053","DOIUrl":null,"url":null,"abstract":"In fields such as polarization navigation and imaging, there is a demand for polarizers to simultaneously possess a high transmittance and extinction ratio. However, most studies focus solely on a single metric for polarizer design. To address this issue, this paper proposed a metasurface polarizer with a transition layer and its efficient design method, aiming to enhance the polarizers’ transmittance and extinction ratio performance simultaneously. An all-dielectric metasurface polarizer with a TiO2 transition layer was designed, and a tandem neural network was constructed by combining forward prediction and inverse design networks. The network is successfully trained by utilizing structural parameters and spectral response Tx and Ty datasets collected through simulation software. A high-performance metasurface polarizer was designed under the desired metrics with a transmittance of 90% and an extinction ratio of 40 dB. The proposed method in this paper made progress in the comprehensive optimization of polarizer performance. It is more accurate and efficient compared to other design methods and is better suited for practical applications.","PeriodicalId":20154,"journal":{"name":"Photonics","volume":"66 34","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/photonics11010053","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
In fields such as polarization navigation and imaging, there is a demand for polarizers to simultaneously possess a high transmittance and extinction ratio. However, most studies focus solely on a single metric for polarizer design. To address this issue, this paper proposed a metasurface polarizer with a transition layer and its efficient design method, aiming to enhance the polarizers’ transmittance and extinction ratio performance simultaneously. An all-dielectric metasurface polarizer with a TiO2 transition layer was designed, and a tandem neural network was constructed by combining forward prediction and inverse design networks. The network is successfully trained by utilizing structural parameters and spectral response Tx and Ty datasets collected through simulation software. A high-performance metasurface polarizer was designed under the desired metrics with a transmittance of 90% and an extinction ratio of 40 dB. The proposed method in this paper made progress in the comprehensive optimization of polarizer performance. It is more accurate and efficient compared to other design methods and is better suited for practical applications.
期刊介绍:
Photonics (ISSN 2304-6732) aims at a fast turn around time for peer-reviewing manuscripts and producing accepted articles. The online-only and open access nature of the journal will allow for a speedy and wide circulation of your research as well as review articles. We aim at establishing Photonics as a leading venue for publishing high impact fundamental research but also applications of optics and photonics. The journal particularly welcomes both theoretical (simulation) and experimental research. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.