A new Wind Atlas to support the expansion of the Italian wind power fleet

Wind Energy Pub Date : 2024-01-04 DOI:10.1002/we.2890
S. Sperati, Stefano Alessandrini, Filippo D'Amico, Will Cheng, Christopher M. Rozoff, Riccardo Bonanno, M. Lacavalla, Martina Aiello, Davide Airoldi, Alessandro Amaranto, G. Decimi, Milena Angelina Vergata
{"title":"A new Wind Atlas to support the expansion of the Italian wind power fleet","authors":"S. Sperati, Stefano Alessandrini, Filippo D'Amico, Will Cheng, Christopher M. Rozoff, Riccardo Bonanno, M. Lacavalla, Martina Aiello, Davide Airoldi, Alessandro Amaranto, G. Decimi, Milena Angelina Vergata","doi":"10.1002/we.2890","DOIUrl":null,"url":null,"abstract":"As a contribution to national strategic energy planning, recent developments in meteorological modeling and wind generation technologies have improved the representation of the spatio‐temporal features of wind. This paper describes an updated Italian Wind Atlas (Atlante EOLico ItaliANo [AEOLIAN]) released in the early 2000s. The objective of AEOLIAN is to guide future wind generation to accord with ambitious European greenhouse gas emission targets set for 2030 and 2050. AEOLIAN is the result of a collaboration effort between Ricerca sul Sistema Energetico (RSE) SpA and the National Center for Atmospheric Research (NCAR), which jointly developed a novel approach combining high‐resolution numerical weather modeling with the Analog Ensemble (AnEn) statistical technique. This paper uses dynamical model runs with hourly output for 1990–2019 with 4 km horizontal grid spacing. For 2015–2019, an inner grid nest with 1.33 km horizontal grid spacing is used. The AnEn is then employed to temporally extend the 5 years of high‐resolution runs back through 1990–2014 to create a 30‐year dataset for Italy and surrounding marine areas. A thorough verification is carried out using 104 observational stations homogeneously distributed throughout the territory. Compared with other state‐of‐the‐art products, AEOLIAN provides enhanced accuracy over complex terrain thanks to higher horizontal resolution and the assimilation of observational wind data over the domain, which result in a reduction of model bias on complex terrain and a better reconstruction of the wind distributions. Finally, a new WebGIS interface (https://atlanteeolico.rse-web.it/) to explore AEOLIAN data is described.","PeriodicalId":506912,"journal":{"name":"Wind Energy","volume":"7 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wind Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/we.2890","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As a contribution to national strategic energy planning, recent developments in meteorological modeling and wind generation technologies have improved the representation of the spatio‐temporal features of wind. This paper describes an updated Italian Wind Atlas (Atlante EOLico ItaliANo [AEOLIAN]) released in the early 2000s. The objective of AEOLIAN is to guide future wind generation to accord with ambitious European greenhouse gas emission targets set for 2030 and 2050. AEOLIAN is the result of a collaboration effort between Ricerca sul Sistema Energetico (RSE) SpA and the National Center for Atmospheric Research (NCAR), which jointly developed a novel approach combining high‐resolution numerical weather modeling with the Analog Ensemble (AnEn) statistical technique. This paper uses dynamical model runs with hourly output for 1990–2019 with 4 km horizontal grid spacing. For 2015–2019, an inner grid nest with 1.33 km horizontal grid spacing is used. The AnEn is then employed to temporally extend the 5 years of high‐resolution runs back through 1990–2014 to create a 30‐year dataset for Italy and surrounding marine areas. A thorough verification is carried out using 104 observational stations homogeneously distributed throughout the territory. Compared with other state‐of‐the‐art products, AEOLIAN provides enhanced accuracy over complex terrain thanks to higher horizontal resolution and the assimilation of observational wind data over the domain, which result in a reduction of model bias on complex terrain and a better reconstruction of the wind distributions. Finally, a new WebGIS interface (https://atlanteeolico.rse-web.it/) to explore AEOLIAN data is described.
新的风能地图集支持意大利风电机组的扩展
作为对国家能源战略规划的贡献,气象建模和风力发电技术的最新发展改进了对风的时空特征的描述。本文介绍了 2000 年代初发布的最新意大利风能地图集(Atlante EOLico ItaliANo [AEOLIAN])。AEOLIAN 的目标是指导未来的风力发电,以符合欧洲为 2030 年和 2050 年制定的雄心勃勃的温室气体排放目标。AEOLIAN 是 Ricerca sul Sistema Energetico (RSE) SpA 和美国国家大气研究中心 (NCAR) 合作的成果,双方共同开发了一种将高分辨率数值天气建模与模拟集合 (AnEn) 统计技术相结合的新方法。本文使用的是 1990-2019 年每小时输出的动力学模式运行,水平网格间距为 4 千米。对于 2015-2019 年,使用了水平网格间距为 1.33 千米的内网格巢。然后,利用 AnEn 将 5 年的高分辨率运行在时间上延伸至 1990-2014 年,从而创建意大利及周边海域的 30 年数据集。利用均匀分布在全境的 104 个观测站进行了全面验证。与其他最先进的产品相比,AEOLIAN 在复杂地形上的精度更高,这得益于更高的水平分辨率和域内观测风数据的同化,从而减少了复杂地形上的模型偏差,并更好地重建了风的分布。最后,介绍了用于探索 AEOLIAN 数据的新 WebGIS 界面(https://atlanteeolico.rse-web.it/)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信