In situ estimation of ice crystal properties at the South Pole using LED calibration data from the IceCube Neutrino Observatory

R. Abbasi, Markus Ackermann, Jenni Adams, Nakul Aggarwal, J. Aguilar, Markus Ahlers, M. Ahrens, J. Alameddine, A. A. Alves Junior, N. M. Amin, K. Andeen, Tyler Anderson, G. Anton, C. Argüelles, Y. Ashida, S. Athanasiadou, S. Axani, Xinhua Bai, A. Balagopal V., M. Baricevic, S. Barwick, V. Basu, Ryan Bay, James Beatty, Karl Heinz Becker, J. Becker Tjus, J. Beise, C. Bellenghi, Samuel Benda, S. BenZvi, D. Berley, E. Bernardini, D. Besson, Gary Binder, D. Bindig, E. Blaufuss, S. Blot, F. Bontempo, Julia Book, J. Borowka, Caterina Boscolo Meneguolo, S. Böser, O. Botner, Jakob Böttcher, E. Bourbeau, J. Braun, B. Brinson, J. Brostean-Kaiser, R. Burley, R. Busse, M. Campana, E. Carnie-Bronca, Chujie Chen, Zheyang Chen, D. Chirkin, Koun Choi, B. Clark, L. Classen, Alan Coleman, G. Collin, A. Connolly, Janet M. Conrad, P. Coppin, Pablo Correa, Stefan Countryman, Doug Cowen, Robert Cross, C. Dappen, Pranav Dave, C. De Clercq, J. DeLaunay, D. Delgado López, Hans Dembinski, K. Deoskar, A. Desai, P. Desiati, Krijn de
{"title":"In situ estimation of ice crystal properties at the South Pole using LED calibration data from the IceCube Neutrino Observatory","authors":"R. Abbasi, Markus Ackermann, Jenni Adams, Nakul Aggarwal, J. Aguilar, Markus Ahlers, M. Ahrens, J. Alameddine, A. A. Alves Junior, N. M. Amin, K. Andeen, Tyler Anderson, G. Anton, C. Argüelles, Y. Ashida, S. Athanasiadou, S. Axani, Xinhua Bai, A. Balagopal V., M. Baricevic, S. Barwick, V. Basu, Ryan Bay, James Beatty, Karl Heinz Becker, J. Becker Tjus, J. Beise, C. Bellenghi, Samuel Benda, S. BenZvi, D. Berley, E. Bernardini, D. Besson, Gary Binder, D. Bindig, E. Blaufuss, S. Blot, F. Bontempo, Julia Book, J. Borowka, Caterina Boscolo Meneguolo, S. Böser, O. Botner, Jakob Böttcher, E. Bourbeau, J. Braun, B. Brinson, J. Brostean-Kaiser, R. Burley, R. Busse, M. Campana, E. Carnie-Bronca, Chujie Chen, Zheyang Chen, D. Chirkin, Koun Choi, B. Clark, L. Classen, Alan Coleman, G. Collin, A. Connolly, Janet M. Conrad, P. Coppin, Pablo Correa, Stefan Countryman, Doug Cowen, Robert Cross, C. Dappen, Pranav Dave, C. De Clercq, J. DeLaunay, D. Delgado López, Hans Dembinski, K. Deoskar, A. Desai, P. Desiati, Krijn de ","doi":"10.5194/tc-18-75-2024","DOIUrl":null,"url":null,"abstract":"Abstract. The IceCube Neutrino Observatory instruments about 1 km3 of deep, glacial ice at the geographic South Pole. It uses 5160 photomultipliers to detect Cherenkov light emitted by charged relativistic particles. An unexpected light propagation effect observed by the experiment is an anisotropic attenuation, which is aligned with the local flow direction of the ice. We examine birefringent light propagation through the polycrystalline ice microstructure as a possible explanation for this effect. The predictions of a first-principles model developed for this purpose, in particular curved light trajectories resulting from asymmetric diffusion, provide a qualitatively good match to the main features of the data. This in turn allows us to deduce ice crystal properties. Since the wavelength of the detected light is short compared to the crystal size, these crystal properties include not only the crystal orientation fabric, but also the average crystal size and shape, as a function of depth. By adding small empirical corrections to this first-principles model, a quantitatively accurate description of the optical properties of the IceCube glacial ice is obtained. In this paper, we present the experimental signature of ice optical anisotropy observed in IceCube light-emitting diode (LED) calibration data, the theory and parameterization of the birefringence effect, the fitting procedures of these parameterizations to experimental data, and the inferred crystal properties.\n","PeriodicalId":509217,"journal":{"name":"The Cryosphere","volume":"1 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Cryosphere","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/tc-18-75-2024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Abstract. The IceCube Neutrino Observatory instruments about 1 km3 of deep, glacial ice at the geographic South Pole. It uses 5160 photomultipliers to detect Cherenkov light emitted by charged relativistic particles. An unexpected light propagation effect observed by the experiment is an anisotropic attenuation, which is aligned with the local flow direction of the ice. We examine birefringent light propagation through the polycrystalline ice microstructure as a possible explanation for this effect. The predictions of a first-principles model developed for this purpose, in particular curved light trajectories resulting from asymmetric diffusion, provide a qualitatively good match to the main features of the data. This in turn allows us to deduce ice crystal properties. Since the wavelength of the detected light is short compared to the crystal size, these crystal properties include not only the crystal orientation fabric, but also the average crystal size and shape, as a function of depth. By adding small empirical corrections to this first-principles model, a quantitatively accurate description of the optical properties of the IceCube glacial ice is obtained. In this paper, we present the experimental signature of ice optical anisotropy observed in IceCube light-emitting diode (LED) calibration data, the theory and parameterization of the birefringence effect, the fitting procedures of these parameterizations to experimental data, and the inferred crystal properties.
利用冰立方中微子天文台的发光二极管校准数据就地估算南极的冰晶特性
摘要冰立方中微子天文台(IceCube Neutrino Observatory)在地理南极约 1 千立方米的深冰川冰层上安装了仪器。它使用 5160 个光电倍增管来探测带电相对论粒子发出的切伦科夫光。实验观测到的一种意想不到的光传播效果是各向异性衰减,这种衰减与冰的局部流动方向一致。我们研究了光在多晶冰微观结构中的双折射传播,以此来解释这种效应。为此开发的第一原理模型的预测结果,特别是不对称扩散产生的弯曲光轨迹,在质量上与数据的主要特征非常吻合。这反过来又使我们能够推断出冰晶的特性。由于探测到的光波长与晶体尺寸相比较短,因此这些晶体特性不仅包括晶体取向结构,还包括晶体的平均尺寸和形状与深度的函数关系。通过对这一第一原理模型添加少量经验修正,可以获得对冰立方冰川冰光学特性的定量精确描述。在本文中,我们介绍了在冰立方发光二极管(LED)校准数据中观测到的冰光学各向异性的实验特征、双折射效应的理论和参数化、这些参数化与实验数据的拟合程序以及推断出的晶体属性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信