Yunhe Ma, Meng Xiang, Xiaoxue Gan, Can Wei, Wenzhuo Cheng, G. Zhou, Jilong Li, Jianping Li, S. Fu, Yuwen Qin
{"title":"Research Progress on Carrier-Free Phase-Retrieval Receivers","authors":"Yunhe Ma, Meng Xiang, Xiaoxue Gan, Can Wei, Wenzhuo Cheng, G. Zhou, Jilong Li, Jianping Li, S. Fu, Yuwen Qin","doi":"10.3390/photonics11010054","DOIUrl":null,"url":null,"abstract":"In order to deal with the chromatic dispersion-induced power fading issue for short-reach direct-detection optical fiber communication applications, such as the ever-increasing data-center interconnections (DCIs), optical filed recovery is intensively being under investigation. To date, various direct detection schemes capable of optical field recovery have been proposed, including the Kramers–Kronig (KK) receiver, asymmetric self-coherence detection (ASCD) receiver, carrier-assisted differential detection receiver (CADD), Stokes vector receiver (SVR), and carrier-free phase-retrieval (CF-PR) receiver. Among those, the CF-PR receiver attracts lots of research attention because it can circumvent the requirement of a strong continuous-wave (CW) optical carrier for the beating with the signal. Generally, the CF-PR receiver consists of only two single-ended photodiodes (PDs) and one dispersive element, for the field recovery of the quadrature amplitude modulation (QAM) signals. Based on the theoretical and experimental studies reported so far, this paper reviews the latest progress of CF-PR receivers designed for high-speed optical short-reach transmission links.","PeriodicalId":20154,"journal":{"name":"Photonics","volume":"4 11","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/photonics11010054","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
In order to deal with the chromatic dispersion-induced power fading issue for short-reach direct-detection optical fiber communication applications, such as the ever-increasing data-center interconnections (DCIs), optical filed recovery is intensively being under investigation. To date, various direct detection schemes capable of optical field recovery have been proposed, including the Kramers–Kronig (KK) receiver, asymmetric self-coherence detection (ASCD) receiver, carrier-assisted differential detection receiver (CADD), Stokes vector receiver (SVR), and carrier-free phase-retrieval (CF-PR) receiver. Among those, the CF-PR receiver attracts lots of research attention because it can circumvent the requirement of a strong continuous-wave (CW) optical carrier for the beating with the signal. Generally, the CF-PR receiver consists of only two single-ended photodiodes (PDs) and one dispersive element, for the field recovery of the quadrature amplitude modulation (QAM) signals. Based on the theoretical and experimental studies reported so far, this paper reviews the latest progress of CF-PR receivers designed for high-speed optical short-reach transmission links.
期刊介绍:
Photonics (ISSN 2304-6732) aims at a fast turn around time for peer-reviewing manuscripts and producing accepted articles. The online-only and open access nature of the journal will allow for a speedy and wide circulation of your research as well as review articles. We aim at establishing Photonics as a leading venue for publishing high impact fundamental research but also applications of optics and photonics. The journal particularly welcomes both theoretical (simulation) and experimental research. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.