IMPLICATIONS OF NEURAL NETWORK AS A DECISION-MAKING TOOL IN MANAGING KAZAKHSTAN’S AGRICULTURAL ECONOMY

Q3 Economics, Econometrics and Finance
M. Kulisz, A. Duisenbekova, J. Kujawska, Danira Kaldybayeva, B. Issayeva, Piotr Lichograj, W. Cel
{"title":"IMPLICATIONS OF NEURAL NETWORK AS A DECISION-MAKING TOOL IN MANAGING KAZAKHSTAN’S AGRICULTURAL ECONOMY","authors":"M. Kulisz, A. Duisenbekova, J. Kujawska, Danira Kaldybayeva, B. Issayeva, Piotr Lichograj, W. Cel","doi":"10.35784/acs-2023-39","DOIUrl":null,"url":null,"abstract":"This study investigates the application of Artificial Neural Networks (ANN) in forecasting agricultural yields in Kazakhstan, highlighting its implications for economic management and policy-making. Utilizing data from the Bureau of National Statistics of the Republic of Kazakhstan (2000-2023), the research develops two ANN models using the Neural Net Fitting library in MATLAB. The first model predicts the total gross yield of main agricultural crops, while the second forecasts the share of individual crops, including cereals, oilseeds, potatoes, vegetables, melons, and sugar beets. The models demonstrate high accuracy, with the total gross yield model achieving an R-squared value of 0.98 and the individual crop model showing an R value of 0.99375. These results indicate a strong predictive capability, essential for practical agricultural and economic planning. The study extends previous research by incorporating a comprehensive range of climatic and agrochemical data, enhancing the precision of yield predictions. The findings have significant implications for Kazakhstan's economy. Accurate yield predictions can optimize agricultural planning, contribute to food security, and inform policy decisions. The successful application of ANN models showcases the potential of AI and machine learning in agriculture, suggesting a pathway towards more efficient, sustainable farming practices and improved quality management systems.","PeriodicalId":36379,"journal":{"name":"Applied Computer Science","volume":"48 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35784/acs-2023-39","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Economics, Econometrics and Finance","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the application of Artificial Neural Networks (ANN) in forecasting agricultural yields in Kazakhstan, highlighting its implications for economic management and policy-making. Utilizing data from the Bureau of National Statistics of the Republic of Kazakhstan (2000-2023), the research develops two ANN models using the Neural Net Fitting library in MATLAB. The first model predicts the total gross yield of main agricultural crops, while the second forecasts the share of individual crops, including cereals, oilseeds, potatoes, vegetables, melons, and sugar beets. The models demonstrate high accuracy, with the total gross yield model achieving an R-squared value of 0.98 and the individual crop model showing an R value of 0.99375. These results indicate a strong predictive capability, essential for practical agricultural and economic planning. The study extends previous research by incorporating a comprehensive range of climatic and agrochemical data, enhancing the precision of yield predictions. The findings have significant implications for Kazakhstan's economy. Accurate yield predictions can optimize agricultural planning, contribute to food security, and inform policy decisions. The successful application of ANN models showcases the potential of AI and machine learning in agriculture, suggesting a pathway towards more efficient, sustainable farming practices and improved quality management systems.
神经网络作为哈萨克斯坦农业经济管理决策工具的影响
本研究探讨了人工神经网络(ANN)在哈萨克斯坦农业产量预测中的应用,强调了其对经济管理和决策的影响。研究利用哈萨克斯坦共和国国家统计局的数据(2000-2023 年),使用 MATLAB 中的神经网络拟合库开发了两个 ANN 模型。第一个模型预测主要农作物的总产量,第二个模型预测谷物、油籽、马铃薯、蔬菜、甜瓜和甜菜等单种作物的产量份额。这些模型显示出很高的准确性,总产量模型的 R 方值为 0.98,单种作物模型的 R 方值为 0.99375。这些结果表明,该模型具有很强的预测能力,对实际农业和经济规划至关重要。这项研究扩展了以往的研究,纳入了全面的气候和农用化学品数据,提高了产量预测的精确度。研究结果对哈萨克斯坦的经济具有重要意义。准确的产量预测可以优化农业规划,促进粮食安全,并为政策决策提供依据。ANN 模型的成功应用展示了人工智能和机器学习在农业领域的潜力,为实现更高效、可持续的农业实践和改进质量管理系统指明了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Computer Science
Applied Computer Science Engineering-Industrial and Manufacturing Engineering
CiteScore
1.50
自引率
0.00%
发文量
0
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信