Numerical model of restrikes in gliding arc discharges

Aymeric Bourlet, F. Tholin, Julien Labaune, F. Pechereau, A. Vincent‐Randonnier, Christophe O Laux
{"title":"Numerical model of restrikes in gliding arc discharges","authors":"Aymeric Bourlet, F. Tholin, Julien Labaune, F. Pechereau, A. Vincent‐Randonnier, Christophe O Laux","doi":"10.1088/1361-6595/ad1b6d","DOIUrl":null,"url":null,"abstract":"\n Direct current (DC) electric arcs are of particular interest because they can produce large volumes of thermal plasmas with controlled energy deposition. When such discharges are applied in a gas flow, convection displaces the top of the arc downstream while the arc roots remain attached to the electrodes, thus increasing the length of the arc over time. However, this growth is limited by a restrike phenomenon, which starts from streamers appearing in high electric field regions and shortcutting the long, stretched electric arc. From a numerical point of view, DC arcs can be efficiently simulated with a resistive magneto-hydrodynamics (MHD) model, with numerical requirements in terms of spatial and temporal discretization that are compatible with classic fluid dynamics and combustion simulations. However, arc restrikes rely on the propagation of streamer discharges that are highly non-neutral phenomena, whereas classical MHD assumes neutrality. To tackle this problem, we propose in this paper a model of restrike that can be used in an MHD approach. After describing the ideas of the model, we perform a parametric study of the input parameters to examine its influence on the discharge dynamics.","PeriodicalId":20192,"journal":{"name":"Plasma Sources Science and Technology","volume":"10 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Sources Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6595/ad1b6d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Direct current (DC) electric arcs are of particular interest because they can produce large volumes of thermal plasmas with controlled energy deposition. When such discharges are applied in a gas flow, convection displaces the top of the arc downstream while the arc roots remain attached to the electrodes, thus increasing the length of the arc over time. However, this growth is limited by a restrike phenomenon, which starts from streamers appearing in high electric field regions and shortcutting the long, stretched electric arc. From a numerical point of view, DC arcs can be efficiently simulated with a resistive magneto-hydrodynamics (MHD) model, with numerical requirements in terms of spatial and temporal discretization that are compatible with classic fluid dynamics and combustion simulations. However, arc restrikes rely on the propagation of streamer discharges that are highly non-neutral phenomena, whereas classical MHD assumes neutrality. To tackle this problem, we propose in this paper a model of restrike that can be used in an MHD approach. After describing the ideas of the model, we perform a parametric study of the input parameters to examine its influence on the discharge dynamics.
滑弧放电中再击穿的数值模型
直流(DC)电弧尤其引人关注,因为它可以通过可控的能量沉积产生大量热等离子体。在气流中进行这种放电时,对流会使电弧顶端向下游移动,而弧根仍附着在电极上,从而随着时间的推移增加电弧的长度。然而,这种增长受到重击现象的限制,重击现象始于在高电场区域出现的流线,并缩短了拉长的电弧。从数值的角度来看,直流电弧可以通过电阻磁流体力学(MHD)模型进行有效模拟,其在空间和时间离散化方面的数值要求与经典的流体动力学和燃烧模拟兼容。然而,电弧重击依赖于流体放电的传播,而流体放电是一种高度非中性的现象,而经典的 MHD 则假定流体放电是中性的。为了解决这个问题,我们在本文中提出了一种可用于 MHD 方法的重击模型。在阐述了该模型的思想之后,我们对输入参数进行了参数研究,以考察其对放电动力学的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信