Online Denoising Single-Pixel Imaging Using Filtered Patterns

IF 2.1 4区 物理与天体物理 Q2 OPTICS
Zhaohua Yang, Xiang Chen, Zhihao Zhao, Lingan Wu, Yuanjin Yu
{"title":"Online Denoising Single-Pixel Imaging Using Filtered Patterns","authors":"Zhaohua Yang, Xiang Chen, Zhihao Zhao, Lingan Wu, Yuanjin Yu","doi":"10.3390/photonics11010059","DOIUrl":null,"url":null,"abstract":"Noise is inevitable in single-pixel imaging (SPI). Although post-processing algorithms can significantly improve image quality, they introduce additional processing time. To address this issue, we propose an online denoising single-pixel imaging scheme at the sampling stage, which uses the filter to optimize the illumination modulation patterns. The image is retrieved through the second-order correlation between the modulation patterns and the intensities detected by the single-pixel detector. Through simulations and experiments, we analyzed the impact of sampling rate, noise intensity, and filter template on the reconstructed images of both binary and grayscale objects. The results demonstrate that the denoising effect is comparable to the imaging-first followed by post-filtering procedures, but the post-processing time is reduced for the same image quality. This method offers a new way for rapid denoising in SPI, and it should be particularly advantageous in applications where time-saving is of paramount importance, such as in image-free large target classification.","PeriodicalId":20154,"journal":{"name":"Photonics","volume":"107 5","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/photonics11010059","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Noise is inevitable in single-pixel imaging (SPI). Although post-processing algorithms can significantly improve image quality, they introduce additional processing time. To address this issue, we propose an online denoising single-pixel imaging scheme at the sampling stage, which uses the filter to optimize the illumination modulation patterns. The image is retrieved through the second-order correlation between the modulation patterns and the intensities detected by the single-pixel detector. Through simulations and experiments, we analyzed the impact of sampling rate, noise intensity, and filter template on the reconstructed images of both binary and grayscale objects. The results demonstrate that the denoising effect is comparable to the imaging-first followed by post-filtering procedures, but the post-processing time is reduced for the same image quality. This method offers a new way for rapid denoising in SPI, and it should be particularly advantageous in applications where time-saving is of paramount importance, such as in image-free large target classification.
利用滤波模式对单像素成像进行在线去噪
单像素成像(SPI)不可避免地会产生噪点。虽然后处理算法能显著提高图像质量,但会增加处理时间。为解决这一问题,我们提出了一种在采样阶段对单像素成像进行在线去噪的方案,该方案利用滤波器优化照明调制模式。通过调制模式与单像素检测器检测到的强度之间的二阶相关性来检索图像。通过模拟和实验,我们分析了采样率、噪声强度和滤波器模板对二进制和灰度物体重建图像的影响。结果表明,该方法的去噪效果与先成像后滤波的方法相当,但在图像质量相同的情况下,后处理时间缩短了。这种方法为 SPI 中的快速去噪提供了一种新的途径,在节省时间至关重要的应用中,如在无图像大型目标分类中,这种方法尤其具有优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Photonics
Photonics Physics and Astronomy-Instrumentation
CiteScore
2.60
自引率
20.80%
发文量
817
审稿时长
8 weeks
期刊介绍: Photonics (ISSN 2304-6732) aims at a fast turn around time for peer-reviewing manuscripts and producing accepted articles. The online-only and open access nature of the journal will allow for a speedy and wide circulation of your research as well as review articles. We aim at establishing Photonics as a leading venue for publishing high impact fundamental research but also applications of optics and photonics. The journal particularly welcomes both theoretical (simulation) and experimental research. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信