{"title":"Inter-turn short circuit and demagnetization fault diagnosis of ship PMSM based on multiscale residual dilated CNN and BiLSTM","authors":"Guo Yan, Yihuai Hu","doi":"10.1088/1361-6501/ad19c0","DOIUrl":null,"url":null,"abstract":"Inter-turn short circuit (ITSC) and demagnetization of permanent magnet synchronous motors (PMSMs) can lead to serious ship accidents, timely and accurate fault diagnosis of these faults is very important. A multi-signal fusion fault diagnosis method (MD-CNN-BiLSTM) is proposed based on multi-scale residual dilated convolutional neural network (D-CNN) and bidirectional long and short-term memory (BiLSTM) for PMSM fault diagnosis. This method first takes three-phase current and vibration signals as input; uses a three-column parallel CNN structure with different scales to extract both global signal and local feature. A residual connection in the expanded CNN is then used to eliminate the problems of gradient disappearance or explosion; and finally, BiLSTM is used to further extract features and identify the fault. A 2.2 kW permanent magnet synchronous motor was used to build a fault simulation test rig. The motor stator was rewound to simulate the ITSC fault, and different sizes of permanent magnets were replaced to simulate demagnetization fault. ITSC, demagnetization and their coupled faults were simulated under 10 specific motor speeds and loads respectively. The test proved that the diagnostic accuracy of the proposed method was 4.2% higher than that of ordinary CNN and 29.06% higher than that of BiLSTM. It also had the best diagnostic effect under the noise interference of different intensities. It was verified that the proposed method has good noise interference and strong classification ability.","PeriodicalId":18526,"journal":{"name":"Measurement Science and Technology","volume":"11 11","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6501/ad19c0","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Inter-turn short circuit (ITSC) and demagnetization of permanent magnet synchronous motors (PMSMs) can lead to serious ship accidents, timely and accurate fault diagnosis of these faults is very important. A multi-signal fusion fault diagnosis method (MD-CNN-BiLSTM) is proposed based on multi-scale residual dilated convolutional neural network (D-CNN) and bidirectional long and short-term memory (BiLSTM) for PMSM fault diagnosis. This method first takes three-phase current and vibration signals as input; uses a three-column parallel CNN structure with different scales to extract both global signal and local feature. A residual connection in the expanded CNN is then used to eliminate the problems of gradient disappearance or explosion; and finally, BiLSTM is used to further extract features and identify the fault. A 2.2 kW permanent magnet synchronous motor was used to build a fault simulation test rig. The motor stator was rewound to simulate the ITSC fault, and different sizes of permanent magnets were replaced to simulate demagnetization fault. ITSC, demagnetization and their coupled faults were simulated under 10 specific motor speeds and loads respectively. The test proved that the diagnostic accuracy of the proposed method was 4.2% higher than that of ordinary CNN and 29.06% higher than that of BiLSTM. It also had the best diagnostic effect under the noise interference of different intensities. It was verified that the proposed method has good noise interference and strong classification ability.
期刊介绍:
Measurement Science and Technology publishes articles on new measurement techniques and associated instrumentation. Papers that describe experiments must represent an advance in measurement science or measurement technique rather than the application of established experimental technique. Bearing in mind the multidisciplinary nature of the journal, authors must provide an introduction to their work that makes clear the novelty, significance, broader relevance of their work in a measurement context and relevance to the readership of Measurement Science and Technology. All submitted articles should contain consideration of the uncertainty, precision and/or accuracy of the measurements presented.
Subject coverage includes the theory, practice and application of measurement in physics, chemistry, engineering and the environmental and life sciences from inception to commercial exploitation. Publications in the journal should emphasize the novelty of reported methods, characterize them and demonstrate their performance using examples or applications.