Cohomology of line bundles on the incidence correspondence

Z. Gao, Claudiu Raicu
{"title":"Cohomology of line bundles on the incidence correspondence","authors":"Z. Gao, Claudiu Raicu","doi":"10.1090/btran/173","DOIUrl":null,"url":null,"abstract":"<p>For a finite dimensional vector space <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper V\">\n <mml:semantics>\n <mml:mi>V</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">V</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of dimension <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n\">\n <mml:semantics>\n <mml:mi>n</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">n</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, we consider the incidence correspondence (or partial flag variety) <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X subset-of double-struck upper P upper V times double-struck upper P upper V Superscript logical-or\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>X</mml:mi>\n <mml:mo>⊂<!-- ⊂ --></mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">P</mml:mi>\n </mml:mrow>\n <mml:mi>V</mml:mi>\n <mml:mo>×<!-- × --></mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">P</mml:mi>\n </mml:mrow>\n <mml:msup>\n <mml:mi>V</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>∨<!-- ∨ --></mml:mo>\n </mml:mrow>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">X\\subset \\mathbb {P}V \\times \\mathbb {P}V^{\\vee }</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, parametrizing pairs consisting of a point and a hyperplane containing it. We completely characterize the vanishing and non-vanishing behavior of the cohomology groups of line bundles on <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\">\n <mml:semantics>\n <mml:mi>X</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">X</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> in characteristic <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p greater-than 0\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>p</mml:mi>\n <mml:mo>></mml:mo>\n <mml:mn>0</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">p>0</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. If <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n equals 3\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>n</mml:mi>\n <mml:mo>=</mml:mo>\n <mml:mn>3</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">n=3</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> then <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\">\n <mml:semantics>\n <mml:mi>X</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">X</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is the full flag variety of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper V\">\n <mml:semantics>\n <mml:mi>V</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">V</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, and the characterization is contained in the thesis of Griffith from the 70s. In characteristic <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"0\">\n <mml:semantics>\n <mml:mn>0</mml:mn>\n <mml:annotation encoding=\"application/x-tex\">0</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, the cohomology groups are described for all <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper V\">\n <mml:semantics>\n <mml:mi>V</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">V</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> by the Borel–Weil–Bott theorem. Our strategy is to recast the problem in terms of computing cohomology of (twists of) divided powers of the cotangent sheaf on projective space, which we then study using natural truncations induced by Frobenius, along with careful estimates of Castelnuovo–Mumford regularity. When <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n equals 3\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>n</mml:mi>\n <mml:mo>=</mml:mo>\n <mml:mn>3</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">n=3</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, we recover the recursive description of characters from recent work of Linyuan Liu, while for general <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n\">\n <mml:semantics>\n <mml:mi>n</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">n</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> we give character formulas for the cohomology of a restricted collection of line bundles. Our results suggest truncated Schur functions as the natural building blocks for the cohomology characters.</p>","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"21 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/btran/173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

For a finite dimensional vector space V V of dimension n n , we consider the incidence correspondence (or partial flag variety) X P V × P V X\subset \mathbb {P}V \times \mathbb {P}V^{\vee } , parametrizing pairs consisting of a point and a hyperplane containing it. We completely characterize the vanishing and non-vanishing behavior of the cohomology groups of line bundles on X X in characteristic p > 0 p>0 . If n = 3 n=3 then X X is the full flag variety of V V , and the characterization is contained in the thesis of Griffith from the 70s. In characteristic 0 0 , the cohomology groups are described for all V V by the Borel–Weil–Bott theorem. Our strategy is to recast the problem in terms of computing cohomology of (twists of) divided powers of the cotangent sheaf on projective space, which we then study using natural truncations induced by Frobenius, along with careful estimates of Castelnuovo–Mumford regularity. When n = 3 n=3 , we recover the recursive description of characters from recent work of Linyuan Liu, while for general n n we give character formulas for the cohomology of a restricted collection of line bundles. Our results suggest truncated Schur functions as the natural building blocks for the cohomology characters.

入射对应上的线束同调
对于维数为 n n 的有限维向量空间 V V,我们考虑入射对应关系(或称偏旗形)X ⊂ P V × P V ∨ X\subset \mathbb {P}V \times \mathbb {P}V^{\vee }。 ,参数对由一个点和包含该点的超平面组成。我们完全描述了特征 p > 0 p>0 时 X X 上线束同调群的消失与非消失行为。如果 n = 3 n=3,那么 X X 是 V V 的全旗变,特征描述包含在格里菲斯 70 年代的论文中。在特征 0 0 中,同调群是由 Borel-Weil-Bott 定理来描述所有 V V 的。我们的策略是用计算投影空间上余切剪切的(捻)分幂的同调来重构这个问题,然后利用弗罗贝纽斯诱导的自然截断以及对卡斯特努沃-芒福德正则性的仔细估计来研究这个问题。当 n = 3 n=3 时,我们恢复了刘林源近期工作中对特征的递归描述,而对于一般 n n,我们给出了线束受限集合同调的特征公式。我们的研究结果表明,截断舒尔函数是同调符的自然构件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信