D. S. Kanshina, I. Melnikov, Maksim V. Ublinsky, S. S. Nikitin, Svetlana A. Valliulina, Tolibdzhon A. Akhadov, M. Surma
{"title":"A Clinical Case of Corticospinal Tract Reorganization of Supplementary Motor Area in a Child After Acute Hypoxic Brain Injury","authors":"D. S. Kanshina, I. Melnikov, Maksim V. Ublinsky, S. S. Nikitin, Svetlana A. Valliulina, Tolibdzhon A. Akhadov, M. Surma","doi":"10.54101/acen.2023.4.12","DOIUrl":null,"url":null,"abstract":"We present clinical observation of a 3-year-old child during recovery after acute hypoxic brain injury (freshwater drowning). Using diagnostic transcranial magnetic stimulation and magnetic resonance tractography with reconstruction of the corticospinal tract (CST) originated from the primary motor cortex and supplementary motor area (SMA), we determined that hypoxic brain injury induced activation of CST from the SMA. The period of reorganization was associated with the development of epileptiform patterns, that confirms the transient hyperexcitability of cortical neurons. Our findings indicate no recovery of motor function after acute hypoxic brain injury when CST originated only from SMA.","PeriodicalId":36946,"journal":{"name":"Annals of Clinical and Experimental Neurology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Clinical and Experimental Neurology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54101/acen.2023.4.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0
Abstract
We present clinical observation of a 3-year-old child during recovery after acute hypoxic brain injury (freshwater drowning). Using diagnostic transcranial magnetic stimulation and magnetic resonance tractography with reconstruction of the corticospinal tract (CST) originated from the primary motor cortex and supplementary motor area (SMA), we determined that hypoxic brain injury induced activation of CST from the SMA. The period of reorganization was associated with the development of epileptiform patterns, that confirms the transient hyperexcitability of cortical neurons. Our findings indicate no recovery of motor function after acute hypoxic brain injury when CST originated only from SMA.