Bionic topology optimization design and multi-objective optimization of guide arm

Yifan Zhu, Fengxiang Xu, Xianglin Deng, Xiaoqiang Niu, Zhen Zou
{"title":"Bionic topology optimization design and multi-objective optimization of guide arm","authors":"Yifan Zhu, Fengxiang Xu, Xianglin Deng, Xiaoqiang Niu, Zhen Zou","doi":"10.1177/09544070231217565","DOIUrl":null,"url":null,"abstract":"Lightweight design is universally recognized as a critical criterion for many engineering problems. In addition to the well-developed topology optimization (TO) method, structural bionics is also considered an effective approach to developing innovative structure designs with lightweight. In the process of natural evolution, bamboo has developed a unique hollow structure with ingenious mechanical properties. Inspired by these characteristics, this paper selected bamboo as a bionic prototype to carry out bionic structure optimization of guide arm. First, the initial guide arm was modeled and simulated for its mechanical behavior. Secondly, similarity analysis between bamboo and guide arm was performed from three aspects, and the parametric bionic guide arm model was established step by step. Then, the key parameters affecting the performance of the bionic guide arm were verified by the parameter sensitivity analysis method. The multi-objective optimization was carried out with the minimum of the total mass and the maximum deformation of guide arm as the optimization objectives. The optimal solution of Pareto solution set was determined by multi-objective decision methods of the Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) and Gray Relational Analysis (GRA). Finally, finite element (FE) method was used to make a comparison between the initial model and the optimal bionic model in terms of mechanical performance. According to the results, under the premise of the mass of the optimized bionic model decreased by 17.44%, the maximum deformation was decreased by 9.24%, the equivalent stress was decreased by 17.33%, and the first-order frequency was increased by 22.92%. Comparison results showed that the proposed bionic model provided the best lightweight solution for guide arm. This study reveals that structural bionics provides a new solution for the lightweight design of guide arm and similar beam structural components.","PeriodicalId":509770,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/09544070231217565","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Lightweight design is universally recognized as a critical criterion for many engineering problems. In addition to the well-developed topology optimization (TO) method, structural bionics is also considered an effective approach to developing innovative structure designs with lightweight. In the process of natural evolution, bamboo has developed a unique hollow structure with ingenious mechanical properties. Inspired by these characteristics, this paper selected bamboo as a bionic prototype to carry out bionic structure optimization of guide arm. First, the initial guide arm was modeled and simulated for its mechanical behavior. Secondly, similarity analysis between bamboo and guide arm was performed from three aspects, and the parametric bionic guide arm model was established step by step. Then, the key parameters affecting the performance of the bionic guide arm were verified by the parameter sensitivity analysis method. The multi-objective optimization was carried out with the minimum of the total mass and the maximum deformation of guide arm as the optimization objectives. The optimal solution of Pareto solution set was determined by multi-objective decision methods of the Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) and Gray Relational Analysis (GRA). Finally, finite element (FE) method was used to make a comparison between the initial model and the optimal bionic model in terms of mechanical performance. According to the results, under the premise of the mass of the optimized bionic model decreased by 17.44%, the maximum deformation was decreased by 9.24%, the equivalent stress was decreased by 17.33%, and the first-order frequency was increased by 22.92%. Comparison results showed that the proposed bionic model provided the best lightweight solution for guide arm. This study reveals that structural bionics provides a new solution for the lightweight design of guide arm and similar beam structural components.
仿生拓扑优化设计和导向臂的多目标优化
轻量化设计被公认为许多工程问题的关键标准。除了成熟的拓扑优化(TO)方法,结构仿生学也被认为是开发创新轻质结构设计的有效方法。竹子在自然进化过程中形成了独特的中空结构,具有巧妙的力学性能。受其启发,本文选择竹子作为仿生原型,对导向臂进行仿生结构优化。首先,对初始导臂进行建模,模拟其力学行为。其次,从三个方面分析了竹子与导向臂的相似性,并逐步建立了仿生导向臂的参数化模型。然后,通过参数敏感性分析方法验证了影响仿生导臂性能的关键参数。以导臂总质量最小和变形量最大为优化目标,进行了多目标优化。通过与理想解相似度排序优选法(TOPSIS)和灰色关系分析法(GRA)等多目标决策方法确定了帕累托解集的最优解。最后,使用有限元(FE)方法对初始模型和最优仿生模型的机械性能进行了比较。结果表明,在质量减少 17.44% 的前提下,优化仿生模型的最大变形量减少了 9.24%,等效应力减少了 17.33%,一阶频率提高了 22.92%。比较结果表明,所提出的仿生模型为导向臂提供了最佳的轻量化解决方案。这项研究表明,结构仿生学为导向臂和类似梁结构部件的轻量化设计提供了一种新的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信