ADAS Simulation Result Dataset Processing Based on Improved BP Neural Network

Data Pub Date : 2024-01-05 DOI:10.3390/data9010011
Songyan Zhao, Lingshan Chen, Yongchao Huang
{"title":"ADAS Simulation Result Dataset Processing Based on Improved BP Neural Network","authors":"Songyan Zhao, Lingshan Chen, Yongchao Huang","doi":"10.3390/data9010011","DOIUrl":null,"url":null,"abstract":"The autonomous driving simulation field lacks evaluation and forecasting systems for simulation results. The data obtained from the simulation of target algorithms and vehicle models cannot be reasonably estimated. This problem affects subsequent vehicle improvement and parameter calibration. The authors relied on the simulation results of the AEB algorithm. We selected the BP Neural Network as the basis and improved it with a genetic algorithm optimized via a roulette algorithm. The regression evaluation indicators of the prediction results show that the GA-BP neural network has better prediction accuracy and generalization ability than the original BP neural network and other optimized BP neural networks. This GA-BP neural network also fills the Gap in Evaluation and Prediction Systems.","PeriodicalId":502371,"journal":{"name":"Data","volume":"48 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/data9010011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The autonomous driving simulation field lacks evaluation and forecasting systems for simulation results. The data obtained from the simulation of target algorithms and vehicle models cannot be reasonably estimated. This problem affects subsequent vehicle improvement and parameter calibration. The authors relied on the simulation results of the AEB algorithm. We selected the BP Neural Network as the basis and improved it with a genetic algorithm optimized via a roulette algorithm. The regression evaluation indicators of the prediction results show that the GA-BP neural network has better prediction accuracy and generalization ability than the original BP neural network and other optimized BP neural networks. This GA-BP neural network also fills the Gap in Evaluation and Prediction Systems.
基于改进 BP 神经网络的 ADAS 仿真结果数据集处理
自动驾驶模拟领域缺乏对模拟结果的评估和预测系统。从目标算法和车辆模型模拟中获得的数据无法得到合理估计。这一问题影响了后续的车辆改进和参数校准。作者依靠 AEB 算法的仿真结果。我们选择了 BP 神经网络作为基础,并通过轮盘算法优化遗传算法对其进行改进。预测结果的回归评价指标表明,GA-BP 神经网络比原始 BP 神经网络和其他优化后的 BP 神经网络具有更好的预测精度和泛化能力。该 GA-BP 神经网络也填补了评估和预测系统的空白。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信