An analytical model of how the negative triangularity cuts off the access to the second stable region in tokamak plasmas

Yi Zhang, Zhibin Guo, R. R. Ma, Min Xu
{"title":"An analytical model of how the negative triangularity cuts off the access to the second stable region in tokamak plasmas","authors":"Yi Zhang, Zhibin Guo, R. R. Ma, Min Xu","doi":"10.1088/1741-4326/ad1b94","DOIUrl":null,"url":null,"abstract":"\n We present an analytical model to evaluate the triangularity-shaping effects in accessing the second stable region for the ideal ballooning mode. Our results indicate that if the triangularity is sufficiently negative, the path from the first to the second stable region will be closed. The reason is that negative triangularity can weaken the stabilizing effect of the ``magnetic well\", and even convert the ``magnetic well\" into a ``magnetic hill\", which will destabilize the ballooning mode. We also show that the synergistic effects of elongation, inverse aspect ratio, and safety factor can reopen the path to the second stable region. Through a variational approach, we derive an analytical expression of the critical negative triangularity for closing the access to the second stable region. Furthermore, our analysis reveals that in the second ballooning stable regime, the negative triangularity tends to inhibit the emergence of quasi marginally stable discrete Alfvén eigenmodes. These findings provide a quantitative understanding of how the negative triangularity configuration impacts the confinement of tokamak plasmas.","PeriodicalId":503481,"journal":{"name":"Nuclear Fusion","volume":"51 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Fusion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1741-4326/ad1b94","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present an analytical model to evaluate the triangularity-shaping effects in accessing the second stable region for the ideal ballooning mode. Our results indicate that if the triangularity is sufficiently negative, the path from the first to the second stable region will be closed. The reason is that negative triangularity can weaken the stabilizing effect of the ``magnetic well", and even convert the ``magnetic well" into a ``magnetic hill", which will destabilize the ballooning mode. We also show that the synergistic effects of elongation, inverse aspect ratio, and safety factor can reopen the path to the second stable region. Through a variational approach, we derive an analytical expression of the critical negative triangularity for closing the access to the second stable region. Furthermore, our analysis reveals that in the second ballooning stable regime, the negative triangularity tends to inhibit the emergence of quasi marginally stable discrete Alfvén eigenmodes. These findings provide a quantitative understanding of how the negative triangularity configuration impacts the confinement of tokamak plasmas.
负三角形如何切断托卡马克等离子体中第二稳定区通道的分析模型
我们提出了一个分析模型,以评估理想气球模式在进入第二个稳定区域时的三角形塑造效应。我们的结果表明,如果三角度足够负,从第一稳定区到第二稳定区的路径将是封闭的。原因是负三角度会削弱 "磁井 "的稳定作用,甚至将 "磁井 "转化为 "磁山",从而破坏气球模式的稳定。我们还证明,伸长率、反长宽比和安全系数的协同效应可以重新打开通往第二稳定区域的道路。通过变分法,我们得出了关闭通向第二稳定区域的临界负三角形的分析表达式。此外,我们的分析表明,在第二气球稳定区,负三角形往往会抑制准边缘稳定的离散阿尔芬特征模的出现。这些发现提供了对负三角形构型如何影响托卡马克等离子体约束的定量理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信