InterpretME: A tool for interpretations of machine learning models over knowledge graphs

Semantic Web Pub Date : 2024-01-05 DOI:10.3233/sw-233511
Yashrajsinh Chudasama, Disha Purohit, Philipp D. Rohde, Julian Gercke, Maria-Esther Vidal
{"title":"InterpretME: A tool for interpretations of machine learning models over knowledge graphs","authors":"Yashrajsinh Chudasama, Disha Purohit, Philipp D. Rohde, Julian Gercke, Maria-Esther Vidal","doi":"10.3233/sw-233511","DOIUrl":null,"url":null,"abstract":"In recent years, knowledge graphs (KGs) have been considered pyramids of interconnected data enriched with semantics for complex decision-making. The potential of KGs and the demand for interpretability of machine learning (ML) models in diverse domains (e.g., healthcare) have gained more attention. The lack of model transparency negatively impacts the understanding and, in consequence, interpretability of the predictions made by a model. Data-driven models should be empowered with the knowledge required to trace down their decisions and the transformations made to the input data to increase model transparency. In this paper, we propose InterpretME, a tool that using KGs, provides fine-grained representations of trained ML models. An ML model description includes data – (e.g., features’ definition and SHACL validation) and model-based characteristics (e.g., relevant features and interpretations of prediction probabilities and model decisions). InterpretME allows for defining a model’s features over data collected in various formats, e.g., RDF KGs, CSV, and JSON. InterpretME relies on the SHACL schema to validate integrity constraints over the input data. InterpretME traces the steps of data collection, curation, integration, and prediction; it documents the collected metadata in the InterpretME KG. InterpretME is published in GitHub11 https://github.com/SDM-TIB/InterpretME and Zenodo22 https://doi.org/10.5281/zenodo.8112628. The InterpretME framework includes a pipeline for enhancing the interpretability of ML models, the InterpretME KG, and an ontology to describe the main characteristics of trained ML models; a PyPI library of InterpretME is also provided33 https://pypi.org/project/InterpretME/. Additionally, a live code44 https://github.com/SDM-TIB/InterpretME_Demo, and a video55 https://www.youtube.com/watch?v=Bu4lROnY4xg demonstrating InterpretME in several use cases are also available.","PeriodicalId":506307,"journal":{"name":"Semantic Web","volume":"79 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Semantic Web","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/sw-233511","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, knowledge graphs (KGs) have been considered pyramids of interconnected data enriched with semantics for complex decision-making. The potential of KGs and the demand for interpretability of machine learning (ML) models in diverse domains (e.g., healthcare) have gained more attention. The lack of model transparency negatively impacts the understanding and, in consequence, interpretability of the predictions made by a model. Data-driven models should be empowered with the knowledge required to trace down their decisions and the transformations made to the input data to increase model transparency. In this paper, we propose InterpretME, a tool that using KGs, provides fine-grained representations of trained ML models. An ML model description includes data – (e.g., features’ definition and SHACL validation) and model-based characteristics (e.g., relevant features and interpretations of prediction probabilities and model decisions). InterpretME allows for defining a model’s features over data collected in various formats, e.g., RDF KGs, CSV, and JSON. InterpretME relies on the SHACL schema to validate integrity constraints over the input data. InterpretME traces the steps of data collection, curation, integration, and prediction; it documents the collected metadata in the InterpretME KG. InterpretME is published in GitHub11 https://github.com/SDM-TIB/InterpretME and Zenodo22 https://doi.org/10.5281/zenodo.8112628. The InterpretME framework includes a pipeline for enhancing the interpretability of ML models, the InterpretME KG, and an ontology to describe the main characteristics of trained ML models; a PyPI library of InterpretME is also provided33 https://pypi.org/project/InterpretME/. Additionally, a live code44 https://github.com/SDM-TIB/InterpretME_Demo, and a video55 https://www.youtube.com/watch?v=Bu4lROnY4xg demonstrating InterpretME in several use cases are also available.
InterpretME:在知识图谱上解释机器学习模型的工具
近年来,知识图谱(KG)被认为是富含语义的互连数据金字塔,可用于复杂决策。知识图谱的潜力和机器学习(ML)模型在不同领域(如医疗保健)中的可解释性需求受到越来越多的关注。缺乏模型透明度会对模型的理解产生负面影响,进而影响模型预测的可解释性。数据驱动型模型应具备追溯其决策和输入数据转换所需的知识,以提高模型的透明度。在本文中,我们提出了 InterpretME,这是一种使用 KGs 的工具,可提供训练有素的 ML 模型的细粒度表示。ML 模型描述包括数据(如特征定义和 SHACL 验证)和基于模型的特征(如相关特征以及预测概率和模型决策的解释)。InterpretME 允许在以各种格式(如 RDF KG、CSV 和 JSON)收集的数据上定义模型特征。InterpretME 依靠 SHACL 模式来验证输入数据的完整性约束。InterpretME 追踪数据收集、整理、整合和预测的各个步骤,并将收集到的元数据记录在 InterpretME KG 中。InterpretME 发布在 GitHub11 https://github.com/SDM-TIB/InterpretME 和 Zenodo22 https://doi.org/10.5281/zenodo.8112628。InterpretME 框架包括一个用于增强 ML 模型可解释性的管道、InterpretME KG 和一个用于描述经过训练的 ML 模型主要特征的本体;InterpretME 的 PyPI 库也已提供33 https://pypi.org/project/InterpretME/。此外,InterpretME 的实时代码44 https://github.com/SDM-TIB/InterpretME_Demo 和视频55 https://www.youtube.com/watch?v=Bu4lROnY4xg 演示了 InterpretME 在几个使用案例中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信