C. Varotsos, Yuri Mazei, Nikolaos Sarlis, D. Saldaev, Maria Efstathiou
{"title":"On the Impacts of the Global Sea Level Dynamics","authors":"C. Varotsos, Yuri Mazei, Nikolaos Sarlis, D. Saldaev, Maria Efstathiou","doi":"10.3390/fractalfract8010039","DOIUrl":null,"url":null,"abstract":"The temporal evolution of the global mean sea level (GMSL) is investigated in the present analysis using the monthly mean values obtained from two sources: a reconstructed dataset and a satellite altimeter dataset. To this end, we use two well-known techniques, detrended fluctuation analysis (DFA) and multifractal DFA (MF-DFA), to study the scaling properties of the time series considered. The main result is that power-law long-range correlations and multifractality apply to both data sets of the global mean sea level. In addition, the analysis revealed nearly identical scaling features for both the 134-year and the last 28-year GMSL-time series, possibly suggesting that the long-range correlations stem more from natural causes. This demonstrates that the relationship between climate change and sea-level anomalies needs more extensive research in the future due to the importance of their indirect processes for ecology and conservation.","PeriodicalId":12435,"journal":{"name":"Fractal and Fractional","volume":"2 3","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractal and Fractional","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3390/fractalfract8010039","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The temporal evolution of the global mean sea level (GMSL) is investigated in the present analysis using the monthly mean values obtained from two sources: a reconstructed dataset and a satellite altimeter dataset. To this end, we use two well-known techniques, detrended fluctuation analysis (DFA) and multifractal DFA (MF-DFA), to study the scaling properties of the time series considered. The main result is that power-law long-range correlations and multifractality apply to both data sets of the global mean sea level. In addition, the analysis revealed nearly identical scaling features for both the 134-year and the last 28-year GMSL-time series, possibly suggesting that the long-range correlations stem more from natural causes. This demonstrates that the relationship between climate change and sea-level anomalies needs more extensive research in the future due to the importance of their indirect processes for ecology and conservation.
期刊介绍:
Fractal and Fractional is an international, scientific, peer-reviewed, open access journal that focuses on the study of fractals and fractional calculus, as well as their applications across various fields of science and engineering. It is published monthly online by MDPI and offers a cutting-edge platform for research papers, reviews, and short notes in this specialized area. The journal, identified by ISSN 2504-3110, encourages scientists to submit their experimental and theoretical findings in great detail, with no limits on the length of manuscripts to ensure reproducibility. A key objective is to facilitate the publication of detailed research, including experimental procedures and calculations. "Fractal and Fractional" also stands out for its unique offerings: it warmly welcomes manuscripts related to research proposals and innovative ideas, and allows for the deposition of electronic files containing detailed calculations and experimental protocols as supplementary material.