Mission-Oriented Electrified Aircraft Propulsion System Design and Verification Using Model-Based Systems Engineering

Zhenchao Hu, Jinwei Chen, Jinzhi Lu, Huisheng Zhang
{"title":"Mission-Oriented Electrified Aircraft Propulsion System Design and Verification Using Model-Based Systems Engineering","authors":"Zhenchao Hu, Jinwei Chen, Jinzhi Lu, Huisheng Zhang","doi":"10.1115/1.4064411","DOIUrl":null,"url":null,"abstract":"\n The concept of electrified aircraft propulsion (EAP) has been proposed and researched widely due to its potential for reduction of fuel burn, emissions and noise. Current studies main focus on the single concept or point design rather than a systematic design and verification exploration. This paper considers whether the given mission is met as evaluation criterion and proposed a mission-oriented design and verification method using Model-based Systems Engineering (MBSE). Instead of using a general modeling language, this method develops a domain-specific meta model library based on six meta-meta models for EAP. A Mission-Operational-Functional-Logical-Physical (MOFLP) modeling methodology is proposed to standardize EAP design process. In addition, the modeling process is integrated with the verification process by executable verification script. In order to verify the effectiveness of this method, a case study about skydiving mission is conducted. The case results show that this method can obtain the initial EAP solution and verify it. Such initial solution can serve as a baseline for subsequent iterative designs.","PeriodicalId":508252,"journal":{"name":"Journal of Engineering for Gas Turbines and Power","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering for Gas Turbines and Power","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4064411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The concept of electrified aircraft propulsion (EAP) has been proposed and researched widely due to its potential for reduction of fuel burn, emissions and noise. Current studies main focus on the single concept or point design rather than a systematic design and verification exploration. This paper considers whether the given mission is met as evaluation criterion and proposed a mission-oriented design and verification method using Model-based Systems Engineering (MBSE). Instead of using a general modeling language, this method develops a domain-specific meta model library based on six meta-meta models for EAP. A Mission-Operational-Functional-Logical-Physical (MOFLP) modeling methodology is proposed to standardize EAP design process. In addition, the modeling process is integrated with the verification process by executable verification script. In order to verify the effectiveness of this method, a case study about skydiving mission is conducted. The case results show that this method can obtain the initial EAP solution and verify it. Such initial solution can serve as a baseline for subsequent iterative designs.
利用基于模型的系统工程进行面向任务的电气化飞机推进系统设计与验证
由于电气化飞机推进器(EAP)具有减少燃料消耗、排放和噪音的潜力,因此这一概念已被广泛提出和研究。目前的研究主要集中于单一概念或点设计,而不是系统的设计和验证探索。本文将是否满足给定任务作为评价标准,并利用基于模型的系统工程(MBSE)提出了一种面向任务的设计和验证方法。该方法不使用通用建模语言,而是针对 EAP 开发了基于六个元元模型的特定领域元模型库。提出了一种任务-运行-功能-逻辑-物理(MOFLP)建模方法,以规范 EAP 设计流程。此外,还通过可执行验证脚本将建模过程与验证过程整合在一起。为了验证该方法的有效性,进行了一项关于跳伞任务的案例研究。案例结果表明,该方法可以获得初始 EAP 解决方案并对其进行验证。这种初始解决方案可作为后续迭代设计的基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信