Optimizing laser-based micro-cutting for PMMA microfluidic device fabrication: thermal analysis and parameter optimization

IF 1.1 4区 工程技术 Q4 ENGINEERING, CHEMICAL
M. N. Bagum, Md. Ahsan Habib, C. A. A. Rashed, M.H. Kibria, Syeda Kumrun Nahar
{"title":"Optimizing laser-based micro-cutting for PMMA microfluidic device fabrication: thermal analysis and parameter optimization","authors":"M. N. Bagum, Md. Ahsan Habib, C. A. A. Rashed, M.H. Kibria, Syeda Kumrun Nahar","doi":"10.1515/ipp-2023-4408","DOIUrl":null,"url":null,"abstract":"Abstract Laser processes have gained popularity in microfluidic device fabrication. This study aims to determine the optimal parameters for laser-based micro-cutting to achieve the desired width, depth, profile, and material removal, considering the thermal properties of PMMA. A CNC CO2 laser was used, and 29 trials tested various speed and power combinations. Two theoretical models based on trial results focused on depth and width. COMSOL Multiphysics FEA software estimated surface temperature. Theoretical depth estimation matched experimental data more accurately when the P/S ratio was below 0.15 and the scanning speed was set at 500 mm/s or 750 mm/s. At 500 mm/s, width estimation was most accurate, up to 30 W. At 750 mm/s, experimental width exceeded predictions. Material removal increased proportionally with increasing P/S ratio, but beyond a threshold of 0.15, material removal remained nearly constant despite rising heat input. Laser-cut track shape varied, resembling a ‘U’ at lower and a ‘V’ at higher ratios. The groove shape transitioned from ‘U’ to ‘V’ when the temperature surpassed 1200 K. A V-shaped groove required a temperature exceeding 1500 K. Optimization confirmed a microchannel depth of 0.197 mm, width of 0.256 mm, and ‘U–V’ channel shape achievable at 30 W and 200 mm/s scanning speed, with a surface temperature of 1325 K.","PeriodicalId":14410,"journal":{"name":"International Polymer Processing","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Polymer Processing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/ipp-2023-4408","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Laser processes have gained popularity in microfluidic device fabrication. This study aims to determine the optimal parameters for laser-based micro-cutting to achieve the desired width, depth, profile, and material removal, considering the thermal properties of PMMA. A CNC CO2 laser was used, and 29 trials tested various speed and power combinations. Two theoretical models based on trial results focused on depth and width. COMSOL Multiphysics FEA software estimated surface temperature. Theoretical depth estimation matched experimental data more accurately when the P/S ratio was below 0.15 and the scanning speed was set at 500 mm/s or 750 mm/s. At 500 mm/s, width estimation was most accurate, up to 30 W. At 750 mm/s, experimental width exceeded predictions. Material removal increased proportionally with increasing P/S ratio, but beyond a threshold of 0.15, material removal remained nearly constant despite rising heat input. Laser-cut track shape varied, resembling a ‘U’ at lower and a ‘V’ at higher ratios. The groove shape transitioned from ‘U’ to ‘V’ when the temperature surpassed 1200 K. A V-shaped groove required a temperature exceeding 1500 K. Optimization confirmed a microchannel depth of 0.197 mm, width of 0.256 mm, and ‘U–V’ channel shape achievable at 30 W and 200 mm/s scanning speed, with a surface temperature of 1325 K.
优化用于 PMMA 微流体设备制造的激光微切割:热分析和参数优化
摘要 激光工艺在微流控设备制造中越来越受欢迎。本研究旨在确定激光微切割的最佳参数,以实现所需的宽度、深度、轮廓和材料去除率,同时考虑到 PMMA 的热特性。研究使用了 CNC CO2 激光器,并进行了 29 次试验,测试了各种速度和功率组合。基于试验结果的两个理论模型重点关注深度和宽度。COMSOL Multiphysics FEA 软件估算了表面温度。当 P/S 比值低于 0.15,扫描速度设定为 500 毫米/秒或 750 毫米/秒时,理论深度估算与实验数据的匹配更为准确。扫描速度为 500 毫米/秒时,宽度估算最为准确,可达 30 W。在 750 毫米/秒时,实验宽度超过了预测值。材料去除率随 P/S 比的增加而成正比增加,但超过 0.15 临界值后,尽管热输入不断增加,材料去除率仍几乎保持不变。激光切割的轨迹形状各不相同,低比率时类似 "U "形,高比率时类似 "V "形。当温度超过 1200 K 时,沟槽形状从 "U "型过渡到 "V "型。V 形凹槽要求温度超过 1500 K。优化结果表明,微通道深度为 0.197 毫米,宽度为 0.256 毫米,通道形状为 "U-V",扫描功率为 30 瓦,扫描速度为 200 毫米/秒,表面温度为 1325 K。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Polymer Processing
International Polymer Processing 工程技术-高分子科学
CiteScore
2.20
自引率
7.70%
发文量
62
审稿时长
6 months
期刊介绍: International Polymer Processing offers original research contributions, invited review papers and recent technological developments in processing thermoplastics, thermosets, elastomers and fibers as well as polymer reaction engineering. For more than 25 years International Polymer Processing, the journal of the Polymer Processing Society, provides strictly peer-reviewed, high-quality articles and rapid communications from the leading experts around the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信