{"title":"Trends in cell medicine: from autologous cells to allogeneic universal-use cells for adoptive T-cell therapies.","authors":"Hiroshi Kawamoto, Kyoko Masuda","doi":"10.1093/intimm/dxad051","DOIUrl":null,"url":null,"abstract":"<p><p>In currently ongoing adoptive T-cell therapies, T cells collected from patients are given back to them after ex vivo activation and expansion. In some cases, T cells are transduced with chimeric antigen receptor (CAR) or T-cell receptor (TCR) genes during the ex vivo culture period in order to endow T cells with the desired antigen specificity. Although such strategies are effective in some types of cancer, there remain issues to be solved: (i) the limited number of cells, (ii) it is time-consuming, (iii) it is costly, and (iv) the quality can be unstable. Points (ii) and (iv) can be solved by preparing allogeneic T cells and cryopreserving them in advance and methods are being developed using healthy donor-derived T cells or pluripotent stem cells as materials. Whereas it is difficult to solve (i) and (iii) in the former case, all the issues can be cleared in the latter case. However, in either case, a new problem arises: rejection by the patient's immune system. Deletion of human leukocyte antigen (HLA) avoids rejection by recipient T cells, but causes rejection by NK cells, which can recognize loss of HLA class I. Various countermeasures have been developed, but no definitive solution is yet available. Therefore, further research and development are necessary.</p>","PeriodicalId":13743,"journal":{"name":"International immunology","volume":" ","pages":"65-73"},"PeriodicalIF":4.8000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10872703/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/intimm/dxad051","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In currently ongoing adoptive T-cell therapies, T cells collected from patients are given back to them after ex vivo activation and expansion. In some cases, T cells are transduced with chimeric antigen receptor (CAR) or T-cell receptor (TCR) genes during the ex vivo culture period in order to endow T cells with the desired antigen specificity. Although such strategies are effective in some types of cancer, there remain issues to be solved: (i) the limited number of cells, (ii) it is time-consuming, (iii) it is costly, and (iv) the quality can be unstable. Points (ii) and (iv) can be solved by preparing allogeneic T cells and cryopreserving them in advance and methods are being developed using healthy donor-derived T cells or pluripotent stem cells as materials. Whereas it is difficult to solve (i) and (iii) in the former case, all the issues can be cleared in the latter case. However, in either case, a new problem arises: rejection by the patient's immune system. Deletion of human leukocyte antigen (HLA) avoids rejection by recipient T cells, but causes rejection by NK cells, which can recognize loss of HLA class I. Various countermeasures have been developed, but no definitive solution is yet available. Therefore, further research and development are necessary.
在目前正在进行的收养 T 细胞疗法中,从患者身上采集的 T 细胞经过体外激活和扩增后再还给患者。在某些情况下,T 细胞会在体外培养期间转导嵌合抗原受体(CAR)或 T 细胞受体(TCR)基因,以赋予 T 细胞所需的抗原特异性。虽然这种策略已被证明对某些类型的癌症有效,但仍有一些问题有待解决:(i) 细胞数量有限;(ii) 耗时;(iii) 成本高;(iv) 质量不稳定。第(ii)和(iv)点可以通过事先制备异体 T 细胞并将其冷冻保存来解决,使用健康供体来源的 T 细胞或多能干细胞作为材料的方法正在开发中。前者很难解决(i)和(iii),而后者则可以解决所有问题。然而,无论哪种情况,都会出现一个新问题:患者免疫系统的排斥反应。删除 HLA 可避免受体 T 细胞的排斥反应,但会引起 NK 细胞的排斥反应,因为 NK 细胞能识别 HLA I 类的缺失。
期刊介绍:
International Immunology is an online only (from Jan 2018) journal that publishes basic research and clinical studies from all areas of immunology and includes research conducted in laboratories throughout the world.