Faeze Khalighi, Ahmad Ahmadi, Alireza Keramat, Arris S. Tijsseling, Aaron C. Zecchin
{"title":"An Efficient Estimation of Fluid–Structure Interaction in Blocked L-shaped Pipelines","authors":"Faeze Khalighi, Ahmad Ahmadi, Alireza Keramat, Arris S. Tijsseling, Aaron C. Zecchin","doi":"10.1007/s40997-023-00734-x","DOIUrl":null,"url":null,"abstract":"<p>The vibration of bends or T-sections excites flexural modes, which require a numerically complex fourth-order differential term in the fluid–structure interaction (FSI) simulation. This paper presents an efficient approximate approach as an alternative to the full simulation of the bending vibration equations. The flexural stiffness of one pipe is lumped at the boundary of the other pipe to eliminate the corresponding problematic differential equation describing lateral vibration. FSI results obtained by the full simulation of the lateral vibration equations are compared with the corresponding proposed approach for intact and blocked L-shaped pipes. The results reveal that the approximate simulation is approximately ten times faster than the full simulation and easier to program. It can simulate different pipe lengths, valve closure times, pipe diameter to wall thickness ratios, blockage lengths, blockage ratios, and blockage locations with sufficient accuracy. Therefore, it can be a promising alternative for the full simulation of blocked pipe systems. As observed in several studies, junction vibration can generate significant signatures on the transient pressure response, which are similar to those of pipe defects and flow blockages meaning that it is important for the simulation model to be able to reflect these dynamics in order to be able to be reliably used to interpret the measured signal. The approximate model can lead to an accurate and simple junction-coupling transient solver for defect detection in pipeline systems without the inconvenience of solving the equation of lateral motion where the FSI effect is not negligible.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40997-023-00734-x","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The vibration of bends or T-sections excites flexural modes, which require a numerically complex fourth-order differential term in the fluid–structure interaction (FSI) simulation. This paper presents an efficient approximate approach as an alternative to the full simulation of the bending vibration equations. The flexural stiffness of one pipe is lumped at the boundary of the other pipe to eliminate the corresponding problematic differential equation describing lateral vibration. FSI results obtained by the full simulation of the lateral vibration equations are compared with the corresponding proposed approach for intact and blocked L-shaped pipes. The results reveal that the approximate simulation is approximately ten times faster than the full simulation and easier to program. It can simulate different pipe lengths, valve closure times, pipe diameter to wall thickness ratios, blockage lengths, blockage ratios, and blockage locations with sufficient accuracy. Therefore, it can be a promising alternative for the full simulation of blocked pipe systems. As observed in several studies, junction vibration can generate significant signatures on the transient pressure response, which are similar to those of pipe defects and flow blockages meaning that it is important for the simulation model to be able to reflect these dynamics in order to be able to be reliably used to interpret the measured signal. The approximate model can lead to an accurate and simple junction-coupling transient solver for defect detection in pipeline systems without the inconvenience of solving the equation of lateral motion where the FSI effect is not negligible.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.